Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-m...Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-ments.Proteins with these characteristics have been found infish living in cold regions,as well as many plants and insects.Although research on plant AFPs started relatively late,their application prospects are broad,leading to the attention of many researchers to the isolation,cloning,and genetic improvement of plant AFP genes.Studies have found that the distribution of AFPs in different species seems to be the result of independent evolu-tionary events.Unlike the AFPs found infish and insects,plant AFPs have multiple hydrophilic ice-binding domains,and their recrystallization inhibition activity is about 10–100 times that offish and insect AFPs.Although different plant AFPs have the characteristics of low TH and high RI,their DNA and amino acid sequences are completely different,with small homology.With in-depth research and analysis of the character-istics and mechanisms of plant AFPs,not only has our understanding of plant antifreeze mechanisms been enriched,but it can also be used to improve crop varieties and enhance their freezing tolerance,yield,and quality through genetic engineering.In addition,the study of plant AFPs also contributes to our understanding of freezing resistance mechanisms in other organisms and provides new research directions for thefield of biotech-nology.Therefore,based on the analysis of relevant literature,this article will delve into the concepts,character-istics,research methods,and mechanisms of plant AFPs,summarize the latest research progress and application prospects of AFPs in plant,and provide prospects for the future development of AFP gene research.展开更多
[Objectives] This study was conducted to screen out suitable agents for controlling tobacco mosaic virus disease and the best control period in Zhangzhou tobacco area, providing a theoretical basis for the control of ...[Objectives] This study was conducted to screen out suitable agents for controlling tobacco mosaic virus disease and the best control period in Zhangzhou tobacco area, providing a theoretical basis for the control of virus diseases, thereby improving the quality of flue-cured tobacco and the income of tobacco farmers. [Methods] The effects on tobacco mosaic virus disease under the interaction between different agents and different application periods were investigated. The incidence of tobacco mosaic virus disease was investigated, and its control effect was analyzed. [Results] Different agents and different application periods had different control effects on tobacco mosaic virus disease. The incidence of tobacco mosaic virus disease: At 30 and 45 d after transplanting, the incidences of A2B1 treatment were the lowest, at 0.85%, 1.71%, respectively;and at 60 d after transplanting, the incidence of A3B1 treatment was the lowest, only 10.68%. The control effect: At 30 and 45 d after transplanting, A2B1 treatment had better control effects, reaching 79.39% and 73.06%, respectively. [Conclusions] 3% hypersensitive protein sprayed at 1 d before transplanting and 7 and 15 d after transplanting achieved the best effect, followed by 10% ningnanmycin sprayed at 1 d before transplanting and 7 and 15 d after transplanting. In tobacco production, it is recommended to apply 1 000 times dilution of 3% supersensitive protein microgranules for three times(at 1 d before transplanting and 7 and 15 d after transplanting), which can effectively prevent tobacco mosaic virus disease.展开更多
Topological insulators represent a new quantum phase of matter with spin-polarized surface states that are protected from backscattering, exhibiting electronic responses to light, such as topological quantum phase tra...Topological insulators represent a new quantum phase of matter with spin-polarized surface states that are protected from backscattering, exhibiting electronic responses to light, such as topological quantum phase transitions. However, the effects of high-frequency driving topological intrinsic systems have remained largely unexplored challenges experimentally for high-sensitivity terahertz detection. In this study, by integrating Sb2Te3 topological insulators with subwavelength metal antennas through micro-nano processing, a high-frequency terahertz detector with high sensitivity is proposed. The enhanced response originates from the asymmetric scattering of the surface electrons in the Sb_(2)Te_(3) flakes induced by the terahertz wave. The device displays room-temperature photodetection with a responsivity of 192 mA/W and equivalent noise power of less than 0.35 nW/Hz^(1/2) in the frequency range from 0.02 to 0.3 THz. These results pave the way for the exploitation of topological insulators for high-frequency operation in real-time imaging within long-wavelength optoelectronics.展开更多
基金funded by the Fundamental Research Funds for the Central Universities under Grant No.BFUKF202309Special Scientific Research Fund of Talents Introduced into Hebei Agricultural University under Grant No.YJ2022025+1 种基金Basic Scientific Research Projects of Provincial Universities in Hebei Province under Grant No.KY202203Hebei Agriculture Research System under Grant No.HBCT2024200101,S&T Program of Hebei under Grant No.21326301D.
文摘Plant antifreeze proteins(AFPs)are special proteins that can protect plant cells from ice crystal damage in low-temperature environments,and they play a crucial role in the process of plants adapting to cold environ-ments.Proteins with these characteristics have been found infish living in cold regions,as well as many plants and insects.Although research on plant AFPs started relatively late,their application prospects are broad,leading to the attention of many researchers to the isolation,cloning,and genetic improvement of plant AFP genes.Studies have found that the distribution of AFPs in different species seems to be the result of independent evolu-tionary events.Unlike the AFPs found infish and insects,plant AFPs have multiple hydrophilic ice-binding domains,and their recrystallization inhibition activity is about 10–100 times that offish and insect AFPs.Although different plant AFPs have the characteristics of low TH and high RI,their DNA and amino acid sequences are completely different,with small homology.With in-depth research and analysis of the character-istics and mechanisms of plant AFPs,not only has our understanding of plant antifreeze mechanisms been enriched,but it can also be used to improve crop varieties and enhance their freezing tolerance,yield,and quality through genetic engineering.In addition,the study of plant AFPs also contributes to our understanding of freezing resistance mechanisms in other organisms and provides new research directions for thefield of biotech-nology.Therefore,based on the analysis of relevant literature,this article will delve into the concepts,character-istics,research methods,and mechanisms of plant AFPs,summarize the latest research progress and application prospects of AFPs in plant,and provide prospects for the future development of AFP gene research.
基金Supported by Science and Technology Project of Ganzhou Tobacco Company of Jiangxi Province(GSYJ[2016]9)
文摘[Objectives] This study was conducted to screen out suitable agents for controlling tobacco mosaic virus disease and the best control period in Zhangzhou tobacco area, providing a theoretical basis for the control of virus diseases, thereby improving the quality of flue-cured tobacco and the income of tobacco farmers. [Methods] The effects on tobacco mosaic virus disease under the interaction between different agents and different application periods were investigated. The incidence of tobacco mosaic virus disease was investigated, and its control effect was analyzed. [Results] Different agents and different application periods had different control effects on tobacco mosaic virus disease. The incidence of tobacco mosaic virus disease: At 30 and 45 d after transplanting, the incidences of A2B1 treatment were the lowest, at 0.85%, 1.71%, respectively;and at 60 d after transplanting, the incidence of A3B1 treatment was the lowest, only 10.68%. The control effect: At 30 and 45 d after transplanting, A2B1 treatment had better control effects, reaching 79.39% and 73.06%, respectively. [Conclusions] 3% hypersensitive protein sprayed at 1 d before transplanting and 7 and 15 d after transplanting achieved the best effect, followed by 10% ningnanmycin sprayed at 1 d before transplanting and 7 and 15 d after transplanting. In tobacco production, it is recommended to apply 1 000 times dilution of 3% supersensitive protein microgranules for three times(at 1 d before transplanting and 7 and 15 d after transplanting), which can effectively prevent tobacco mosaic virus disease.
基金Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)Science and Technology Commission of Shanghai Municipality(20JC1416000,20QA1410400,22JC1402900)+3 种基金Excellent Postdoctoral Research Projects of Zhejiang Province(ZJ2021019)Natural Science Foundation of Zhejiang Province(LQ20F050005,LR22F050004)National Natural Science Foundation of China(62222514,61521005,61875217,61875218,61875223,61991442,62005249,91850208)State Key Program for Basic Research of China(2018YFA0306200).
文摘Topological insulators represent a new quantum phase of matter with spin-polarized surface states that are protected from backscattering, exhibiting electronic responses to light, such as topological quantum phase transitions. However, the effects of high-frequency driving topological intrinsic systems have remained largely unexplored challenges experimentally for high-sensitivity terahertz detection. In this study, by integrating Sb2Te3 topological insulators with subwavelength metal antennas through micro-nano processing, a high-frequency terahertz detector with high sensitivity is proposed. The enhanced response originates from the asymmetric scattering of the surface electrons in the Sb_(2)Te_(3) flakes induced by the terahertz wave. The device displays room-temperature photodetection with a responsivity of 192 mA/W and equivalent noise power of less than 0.35 nW/Hz^(1/2) in the frequency range from 0.02 to 0.3 THz. These results pave the way for the exploitation of topological insulators for high-frequency operation in real-time imaging within long-wavelength optoelectronics.