Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationali...Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationality of environmental air quality control strategies.Based on the sampling and chemical composition data of PM2.5 in different key regions of China in the CARE-China observation network,this research analyzes the environmental air quality data released by the China National Environmental Monitoring Centre during the studied period to determine the changes in the particulate matter mass concentration in key regions and the evolution of the corresponding chemical compositions during the implementation of the Action Plan for Prevention and Control of Air Pollution from 2013-2017.The results show the following.(1)The particulate matter mass concentration in China showed a significant downward trend;however,the PM2.5 annual mass concentration in 64%of cities exceeds the New Chinese Ambient Air Quality Standard(CAAQS)GradeⅡ(GB3095-2012).The region to the east of the Taihang Mountains,the Fenhe and Weihe River Plain and the Urumqi-Changji regions in Xinjiang,all have PM2.5 concentration loading that is still high,and heavy haze pollution occurred frequently in the autumn and winter.(2)During the heavy pollution in the autumn and winter,the concentrations of sulfate and organic components decreased significantly.The mean SO42-concentration in PM2.5 decreased by 76%,12%,81%and 38%in Beijing-Tianjin-Hebei(BTH),the Pearl River Delta(PRD),the Sichuan-Chongqing region(SC)and the Fenhe and Weihe River Plain,respectively.The mean organic matter(OM)concentration decreased by 70%,44%,48%and 31%,respectively,and the mean concentration of NH4+decreased by 68%,1.6%,38%and 25%,respectively.The mean elemental carbon(EC)concentration decreased by 84%and 20%in BTH and SC,respectively,and it increased by 61%and 11%in the PRD and Fenhe and Weihe River Plain,respectively.The mean concentration of mineral and unresolved chemical components(MI)dropped by 70%,24%and 13%in BTH,the PRD and the Fenhe and Weihe River Plain,respectively.The change in the PM2.5 chemical composition is consistent with the decrease of the PM2.5mass concentration.(3)In 2015,the mean OM concentration contributions to fine particles and coarse particles were 13-46%and 46-57%,respectively,and the mean MI concentration contributions to fine particles and coarse and particles were 31-60%and 39-73%,respectively;these values are lower than the 2013 values from the key regions,which is the most important factor behind the decrease of the particulate matter mass concentration.From 2013 to 2015,among the chemical components of different particle size fractions,the peak value of the coarse particle size fraction decreased significantly,and the fine particle size fractions of SO42-,NO3-,and NH4+decreased with the decrease of the particulate matter mass concentration in different particle size fractions.The fine-particle size peaks of SO42-,NO3-and NH4+shifted from 0.65-1.1μm to the finer size range of0.43-0.65μm during the same time frame.展开更多
Owing to the vast territory of China and strong regional characteristic of ozone pollution,it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China ...Owing to the vast territory of China and strong regional characteristic of ozone pollution,it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China.Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function(REOF)analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3 years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations(O3-8 hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6 ± 14.6 and 133.9 ± 25.8 μg/m3,respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population.展开更多
In order to provide scientific support to policy makers in the regulation of PM2.5 pollution in China, it is important to accurately assess the current status, spatiotemporal characteristics and regionalization data f...In order to provide scientific support to policy makers in the regulation of PM2.5 pollution in China, it is important to accurately assess the current status, spatiotemporal characteristics and regionalization data for this air pollutant. An analysis of the pollution status of PM2.5 was conducted using daily averaged mass concentration data recorded in 74 cities in 2013 and 161 cities in 2014. The rotated empirical orthogonal function(REOF) method was applied to analyze this data. Results showed that the average annual PM2.5 concentration in urban areas of China is 62.2±21.5 ?g/m3, and that the distribution is spatially heterogeneous. The North China Plain, middle and lower Yangtze River Plain, Sichuan Basin and Guanzhong Plain had relatively high annual PM2.5 concentrations compared with the southeast coastal region, the Tibetan Plateau and the Yungui Plateau. PM2.5 mass concentrations tended to be higher in winter than in summer, however, the data for many cities showed a small peak in concentrations from May to July. An analysis of the spatial correlation of PM2.5 indicated a significant influence of topographic conditions. A lower correlation was observed where terrain features varied greatly. Based on the results of the REOF analysis and topographic characteristics, ten regions were identified in mid-eastern China, which could be considered as basic pollution prevention divisions for PM2.5; these include the North China Plain region, Pearl River Delta region, Jianghuai Plain region, middle Yangtze River Plain region, Northeast Plain region, Jiangnan coastal region, Sichuan Basin region, Qiantao Plain region, Guanzhong-Central Plain region and Yungui Plateau region. Seasonal variations in the regionalization data were observed, especially for the North China Plain and Pearl River Delta regions. Among the ten regions identified in this study, the North China Plain, Guanzhong-Central Plain, middle Yangtze River Plain and Jianghuai Plain had relatively high PM2.5 mass concentrations in comparison with the others. Therefore, these regions should be considered as the key regions to target in developing PM2.5 pollution prevention strategies. This study improves the present understanding of the spatial distribution, seasonal changes and regional status of PM2.5 pollution in China and helps establish possible control strategies for the reduction of this air pollutant.展开更多
基金supported by the Ministry of Science and Technology National Key Research and Development Program (Grant No. 2017YFC0210000)the Fundamental Heavy Pollution Cause and Governance Research Project (Grant No. DQGG0101)the Beijing Municipal Science and Technology Commission Capital Blue Sky Action and Cultivation Project (Grant No. Z181100005418014)
文摘Accurate determination of the atmospheric particulate matter mass concentration and chemical composition is helpful in exploring the causes and sources of atmospheric enthalpy pollution and in evaluating the rationality of environmental air quality control strategies.Based on the sampling and chemical composition data of PM2.5 in different key regions of China in the CARE-China observation network,this research analyzes the environmental air quality data released by the China National Environmental Monitoring Centre during the studied period to determine the changes in the particulate matter mass concentration in key regions and the evolution of the corresponding chemical compositions during the implementation of the Action Plan for Prevention and Control of Air Pollution from 2013-2017.The results show the following.(1)The particulate matter mass concentration in China showed a significant downward trend;however,the PM2.5 annual mass concentration in 64%of cities exceeds the New Chinese Ambient Air Quality Standard(CAAQS)GradeⅡ(GB3095-2012).The region to the east of the Taihang Mountains,the Fenhe and Weihe River Plain and the Urumqi-Changji regions in Xinjiang,all have PM2.5 concentration loading that is still high,and heavy haze pollution occurred frequently in the autumn and winter.(2)During the heavy pollution in the autumn and winter,the concentrations of sulfate and organic components decreased significantly.The mean SO42-concentration in PM2.5 decreased by 76%,12%,81%and 38%in Beijing-Tianjin-Hebei(BTH),the Pearl River Delta(PRD),the Sichuan-Chongqing region(SC)and the Fenhe and Weihe River Plain,respectively.The mean organic matter(OM)concentration decreased by 70%,44%,48%and 31%,respectively,and the mean concentration of NH4+decreased by 68%,1.6%,38%and 25%,respectively.The mean elemental carbon(EC)concentration decreased by 84%and 20%in BTH and SC,respectively,and it increased by 61%and 11%in the PRD and Fenhe and Weihe River Plain,respectively.The mean concentration of mineral and unresolved chemical components(MI)dropped by 70%,24%and 13%in BTH,the PRD and the Fenhe and Weihe River Plain,respectively.The change in the PM2.5 chemical composition is consistent with the decrease of the PM2.5mass concentration.(3)In 2015,the mean OM concentration contributions to fine particles and coarse particles were 13-46%and 46-57%,respectively,and the mean MI concentration contributions to fine particles and coarse and particles were 31-60%and 39-73%,respectively;these values are lower than the 2013 values from the key regions,which is the most important factor behind the decrease of the particulate matter mass concentration.From 2013 to 2015,among the chemical components of different particle size fractions,the peak value of the coarse particle size fraction decreased significantly,and the fine particle size fractions of SO42-,NO3-,and NH4+decreased with the decrease of the particulate matter mass concentration in different particle size fractions.The fine-particle size peaks of SO42-,NO3-and NH4+shifted from 0.65-1.1μm to the finer size range of0.43-0.65μm during the same time frame.
基金supported by the Special Funds of the State Environmental Protection Public Welfare Industry (Nos. 201509001, 201509002)the National Key Research and Development Program of China (No. 2016YFC0201800)the National Major Scientific Instruments and Equipment Development Projects of China (No. 2011YQ120024)
文摘Owing to the vast territory of China and strong regional characteristic of ozone pollution,it's desirable for policy makers to have a targeted and prioritized regulation and ozone pollution control strategy in China based on scientific evidences. It's important to assess its current pollution status as well as spatial and temporal variation patterns across China.Recent advances of national monitoring networks provide an opportunity to insight the actions of ozone pollution. Here, we present rotated empirical orthogonal function(REOF)analysis that was used on studying the spatiotemporal characteristics of daily ozone concentrations. Based on results of REOF analysis in pollution seasons for 3 years' observations, twelve regions with clear patterns were identified in China. The patterns of temporal variation of ozone in each region were separated well and different from each other, reflecting local meteorological, photochemical or pollution features. A rising trend in annual averaged Eight-hour Average Ozone Concentrations(O3-8 hr) from 2014 to 2016 was observed for all regions, except for the Tibetan Plateau. The mean values of annual and 90 percentile concentrations for all 338 cities were 82.6 ± 14.6 and 133.9 ± 25.8 μg/m3,respectively, in 2015. The regionalization results of ozone were found to be influenced greatly by terrain features, indicating significant terrain and landform effects on ozone spatial correlations. Among 12 regions, North China Plain, Huanghuai Plain, Central Yangtze River Plain, Pearl River Delta and Sichuan Basin were realized as priority regions for mitigation strategies, due to their higher ozone concentrations and dense population.
基金supported by the Special Funds of the State Environmental Protection Public Welfare Industry(201509001,201309016)the Transformation Project of China National Environmental Monitoring Center(2011ZX-010-001)
文摘In order to provide scientific support to policy makers in the regulation of PM2.5 pollution in China, it is important to accurately assess the current status, spatiotemporal characteristics and regionalization data for this air pollutant. An analysis of the pollution status of PM2.5 was conducted using daily averaged mass concentration data recorded in 74 cities in 2013 and 161 cities in 2014. The rotated empirical orthogonal function(REOF) method was applied to analyze this data. Results showed that the average annual PM2.5 concentration in urban areas of China is 62.2±21.5 ?g/m3, and that the distribution is spatially heterogeneous. The North China Plain, middle and lower Yangtze River Plain, Sichuan Basin and Guanzhong Plain had relatively high annual PM2.5 concentrations compared with the southeast coastal region, the Tibetan Plateau and the Yungui Plateau. PM2.5 mass concentrations tended to be higher in winter than in summer, however, the data for many cities showed a small peak in concentrations from May to July. An analysis of the spatial correlation of PM2.5 indicated a significant influence of topographic conditions. A lower correlation was observed where terrain features varied greatly. Based on the results of the REOF analysis and topographic characteristics, ten regions were identified in mid-eastern China, which could be considered as basic pollution prevention divisions for PM2.5; these include the North China Plain region, Pearl River Delta region, Jianghuai Plain region, middle Yangtze River Plain region, Northeast Plain region, Jiangnan coastal region, Sichuan Basin region, Qiantao Plain region, Guanzhong-Central Plain region and Yungui Plateau region. Seasonal variations in the regionalization data were observed, especially for the North China Plain and Pearl River Delta regions. Among the ten regions identified in this study, the North China Plain, Guanzhong-Central Plain, middle Yangtze River Plain and Jianghuai Plain had relatively high PM2.5 mass concentrations in comparison with the others. Therefore, these regions should be considered as the key regions to target in developing PM2.5 pollution prevention strategies. This study improves the present understanding of the spatial distribution, seasonal changes and regional status of PM2.5 pollution in China and helps establish possible control strategies for the reduction of this air pollutant.