A NIR fluorescent probe(DDAA) derived from fluorophore DDAO with alanine as the recognition group was developed for sensing aminopeptidase N(APN) in gut microbiota.Using DDAA as the real-time guidance tool for the flu...A NIR fluorescent probe(DDAA) derived from fluorophore DDAO with alanine as the recognition group was developed for sensing aminopeptidase N(APN) in gut microbiota.Using DDAA as the real-time guidance tool for the fluorescence imaging of intestinal microorganism,target bacteria and saccharomycete possessing active APN were identified successfully from human feces.展开更多
Carboxylesterase 1(CES1), one of the most abundant serine hydrolases in mammals, has drawn much attentions in recent years, owing to this enzyme involves in many physiological processes via hydrolysis of both endogeno...Carboxylesterase 1(CES1), one of the most abundant serine hydrolases in mammals, has drawn much attentions in recent years, owing to this enzyme involves in many physiological processes via hydrolysis of both endogenous esters and xenobiotic esters. Herein, to real-time monitor the activities of CES1 in various biological systems, a practical and iso form-specific fluorescent probe was developed on the basis of the substrate preference of CES1, as well as the structural and optical properties of BODIPY dyes. After screening of a panel of BODIPY ester derivatives, probe 1 displayed the best combination of specificity,sensitivity, enzymatic kinetics and applicability for monitoring CES1 activities in real samples. This probe was successfully used to detect CESl activities in several biological systems including tissue preparations,living cells, tissue slices and zebrafish. Furthermore, the biomedical applications of probe 1 for screening of CES1 inhibitors were also demonstrated using tissue preparations or living cells as enzyme sources. In summary, a practical and broadly applicable tool for real-time monitoring CES1 in biological systems was developed and well-characterized, which held great promise for further investigations on CES1-associated drug discovery, clinical practice and fundamental research.展开更多
Uridine diphosphate(UDP)-glucuronosyltransferases(UGTs)are enzymes involved in the biotransformation of important endogenous compounds such as steroids,bile acids,and hormones as well as exogenous substances including...Uridine diphosphate(UDP)-glucuronosyltransferases(UGTs)are enzymes involved in the biotransformation of important endogenous compounds such as steroids,bile acids,and hormones as well as exogenous substances including drugs,environmental toxicants,and carcinogens.Here,a novel fluorescent probe BDMP was developed based on boron-dipyrromethene(BODIPY)with high sensitivity for the detection of UGT1A8.The glucuronidation of BDMP not only exhibited a redemission wavelength(lex/lem=500/580 nm),but also displayed an excellent UGT1A8-dependent fluorescence signal with a good linear relationship with UGT1A8 concentration.Based on this perfect biocompatibility and cell permeability,BDMP was successfully used to image endogenous UGT1A8 in human cancer cell lines(LoVo and HCT15)in real time.In addition,BDMP could also be used to visualize UGT1A8 in tumor tissues.These results suggested that BDMP is a promising molecular tool for the investigation of UGT1A8-mediated physiological function in humans.展开更多
Vanin-1 is an amidohydrolase that catalyses the conversion of pantetheine into the aminothiol cysteamine and pantothenic acid(coenzyme A precursor), which plays a vital role in multiple physiological and pathological ...Vanin-1 is an amidohydrolase that catalyses the conversion of pantetheine into the aminothiol cysteamine and pantothenic acid(coenzyme A precursor), which plays a vital role in multiple physiological and pathological processes. In this study, an enzyme-activated near-infrared(NIR) fluorescent probe(DDAV) has been constructed for sensitively detecting Vanin-1 activity in complicated biosamples on the basis of its catalytic characteristics. DDAV exhibited a high selectivity and sensitivity toward Vanin-1 and was successfully applied to the early diagnosis of kidney injury in cisplatin-induced kidney injury model. In addition, DDAV could serve as a visual tool for in situ imaging endogenous Vanin-1 in vivo. More importantly, Enterococcus faecalis 20247 which possessed high expression of Vanin-1 was screened out from intestinal bacteria using DDAV, provided useful guidance for the rational use of NSAIDs in clinic. Finally, oleuropein as a potent natural inhibitor for Vanin-1 was discovered fromherbal medicines library using a high-throughput screening method using DDAV, which held great promise for clinical therapy of inflammatory bowel disease.展开更多
Currently,the development of selective fluorescent probes toward targeted enzymes is still a great challenge,due to the existence of numerous isoenzymes that share similar catalytic capacity.Herein,a double-filtering ...Currently,the development of selective fluorescent probes toward targeted enzymes is still a great challenge,due to the existence of numerous isoenzymes that share similar catalytic capacity.Herein,a double-filtering strategy was established to effectively develop isoenzyme-specific fluorescent probe(s)for cytochrome P450(CYP)which are key enzymes involving in metabolism of endogenous substances and drugs.In the first-stage of our filtering approach,near-infrared(NIR)fluorophores with alkoxyl group were prepared for the screening of CYP-activated fluorescent substrates using a CYPs-dependent incubation system.In the second stage of our filtering approach,these candidates were further screened using reverse protein-ligand docking to effectively determine CYP isoenzyme-specific probe(s).Using our double-filtering approach,probes S9 and S10 were successfully developed for the real-time and selective detection of CYP2C9 and CYP2J2,respectively,to facilitate high-throughput screening and assessment of CYP2C9-mediated clinical drug interaction risks and CYP2J2-associated disease diagnosis.These observations suggest that our strategy could be used to develop the isoform-specific probes for CYPs.展开更多
基金supported financially by National Natural Science Foundation of China (Nos.81872970, 81930112)Dalian Science and Technology Leading Talents Project (No.2019RD15)+1 种基金Liaoning Provincial Natural Science Foundation (Nos.20180550761and 2019-BS-056)Liaoning Revitalization Talents Program(No.XLYC1907017)。
文摘A NIR fluorescent probe(DDAA) derived from fluorophore DDAO with alanine as the recognition group was developed for sensing aminopeptidase N(APN) in gut microbiota.Using DDAA as the real-time guidance tool for the fluorescence imaging of intestinal microorganism,target bacteria and saccharomycete possessing active APN were identified successfully from human feces.
基金supported by the National Natural Science Foundation of China(Nos. 21572029, 31600641,81703604, 81773687, 81672961 and 81573501)the National Key Research and Development Program of China (Nos. 2017YFC1700200 and 2017YFC1702000)+2 种基金Program of Shanghai Academic/Technology Research Leader(No. 18XD1403600)Shuguang Program (No. 18SG40)supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission and the Innovative Entrepreneurship Program of High-level Talents in Dalian (Nos. 2016RQ025 and 2017RQ121)
文摘Carboxylesterase 1(CES1), one of the most abundant serine hydrolases in mammals, has drawn much attentions in recent years, owing to this enzyme involves in many physiological processes via hydrolysis of both endogenous esters and xenobiotic esters. Herein, to real-time monitor the activities of CES1 in various biological systems, a practical and iso form-specific fluorescent probe was developed on the basis of the substrate preference of CES1, as well as the structural and optical properties of BODIPY dyes. After screening of a panel of BODIPY ester derivatives, probe 1 displayed the best combination of specificity,sensitivity, enzymatic kinetics and applicability for monitoring CES1 activities in real samples. This probe was successfully used to detect CESl activities in several biological systems including tissue preparations,living cells, tissue slices and zebrafish. Furthermore, the biomedical applications of probe 1 for screening of CES1 inhibitors were also demonstrated using tissue preparations or living cells as enzyme sources. In summary, a practical and broadly applicable tool for real-time monitoring CES1 in biological systems was developed and well-characterized, which held great promise for further investigations on CES1-associated drug discovery, clinical practice and fundamental research.
基金the Natural Science Foundation of Liaoning Province 2020-MS-252the National Key R&D Program of China(Grant No.2018YFC1603001).
文摘Uridine diphosphate(UDP)-glucuronosyltransferases(UGTs)are enzymes involved in the biotransformation of important endogenous compounds such as steroids,bile acids,and hormones as well as exogenous substances including drugs,environmental toxicants,and carcinogens.Here,a novel fluorescent probe BDMP was developed based on boron-dipyrromethene(BODIPY)with high sensitivity for the detection of UGT1A8.The glucuronidation of BDMP not only exhibited a redemission wavelength(lex/lem=500/580 nm),but also displayed an excellent UGT1A8-dependent fluorescence signal with a good linear relationship with UGT1A8 concentration.Based on this perfect biocompatibility and cell permeability,BDMP was successfully used to image endogenous UGT1A8 in human cancer cell lines(LoVo and HCT15)in real time.In addition,BDMP could also be used to visualize UGT1A8 in tumor tissues.These results suggested that BDMP is a promising molecular tool for the investigation of UGT1A8-mediated physiological function in humans.
基金financially supported by National Natural Science Foundation of China(Nos.81930112 and 82004211)State Key Laboratory of Fine Chemicals KF1912,Distinguished professor of Liaoning Province,Dalian Science and Technology Leading Talents Project(2019RD15,China)the Open Research Fund of the School of Chemistry and Chemical Engineering,Henan Normal University(2021YB07)。
文摘Vanin-1 is an amidohydrolase that catalyses the conversion of pantetheine into the aminothiol cysteamine and pantothenic acid(coenzyme A precursor), which plays a vital role in multiple physiological and pathological processes. In this study, an enzyme-activated near-infrared(NIR) fluorescent probe(DDAV) has been constructed for sensitively detecting Vanin-1 activity in complicated biosamples on the basis of its catalytic characteristics. DDAV exhibited a high selectivity and sensitivity toward Vanin-1 and was successfully applied to the early diagnosis of kidney injury in cisplatin-induced kidney injury model. In addition, DDAV could serve as a visual tool for in situ imaging endogenous Vanin-1 in vivo. More importantly, Enterococcus faecalis 20247 which possessed high expression of Vanin-1 was screened out from intestinal bacteria using DDAV, provided useful guidance for the rational use of NSAIDs in clinic. Finally, oleuropein as a potent natural inhibitor for Vanin-1 was discovered fromherbal medicines library using a high-throughput screening method using DDAV, which held great promise for clinical therapy of inflammatory bowel disease.
基金The authors thank the National Natural Science Foundation of China(81930112,82174228 and 82004211)National Key R&D program of China(2018YFC1705900)+3 种基金Distinguished Professor of Liaoning Province(XLYC2002008,China)“1+X”program for Clinical Competency enhancement-Interdisciplinary Innovation Project of Second Hospital of Dalian Medical University,Dalian Science and Technology Leading Talents Project(2019RD15,China)High-level Talents of Dalian(2020RQ066 and 2020RQ076,China)the Open Research Fund of the School of Chemistry and Chemical Engineering,and Henan Normal University for support(2020ZD01 and 2021YB07,China)for financial support.T.D.J.wishes to thank the Royal Society for a Wolfson Research Merit Award.
文摘Currently,the development of selective fluorescent probes toward targeted enzymes is still a great challenge,due to the existence of numerous isoenzymes that share similar catalytic capacity.Herein,a double-filtering strategy was established to effectively develop isoenzyme-specific fluorescent probe(s)for cytochrome P450(CYP)which are key enzymes involving in metabolism of endogenous substances and drugs.In the first-stage of our filtering approach,near-infrared(NIR)fluorophores with alkoxyl group were prepared for the screening of CYP-activated fluorescent substrates using a CYPs-dependent incubation system.In the second stage of our filtering approach,these candidates were further screened using reverse protein-ligand docking to effectively determine CYP isoenzyme-specific probe(s).Using our double-filtering approach,probes S9 and S10 were successfully developed for the real-time and selective detection of CYP2C9 and CYP2J2,respectively,to facilitate high-throughput screening and assessment of CYP2C9-mediated clinical drug interaction risks and CYP2J2-associated disease diagnosis.These observations suggest that our strategy could be used to develop the isoform-specific probes for CYPs.