期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dimensional Gradient Structure of CoSe2@CNTs-MXene Anode Assisted by Ether for High-Capacity,Stable Sodium Storage 被引量:4
1
作者 Enze Xu Pengcheng Li +7 位作者 Junjie Quan Hanwen Zhu Li Wang Yajing Chang zhenjie sun Lei Chen Dabin Yu Yang Jiang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期377-390,共14页
Recently,abundant resources,low-cost sodium-ion batteries are deemed to the new-generation battery in the field of largescale energy storage.Nevertheless,poor active reaction dynamics,dissolution of intermediates and ... Recently,abundant resources,low-cost sodium-ion batteries are deemed to the new-generation battery in the field of largescale energy storage.Nevertheless,poor active reaction dynamics,dissolution of intermediates and electrolyte matching problems are significant challenges that need to be solved.Herein,dimensional gradient structure of sheet-tube-dots is constructed with CoSe2@CNTs-MXene.Gradient structure is conducive to fast migration of electrons and ions with the association of ether electrolyte.For half-cell,CoSe2@CNTs-MXene exhibits high initial coulomb efficiency(81.7%)and excellent cycling performance(400 mAh g^-1 cycling for 200 times in 2 Ag^−1).Phase transformation pathway from crystalline CoSe2-Na2Se with Co and then amorphous CoSe2 in the discharge/charge process is also explored by in situ X-ray diffraction.Density functional theory study discloses the CoSe2@CNTs-MXene in ether electrolyte system which contributes to stable sodium storage performance owing to the strong adsorption force from hierarchical structure and weak interaction between electrolyte and electrode interface.For full cell,CoSe2@CNTs-MXene//Na3V2(PO4)3/C full battery can also afford a competitively reversible capacity of 280 mAh g^−1 over 50 cycles.Concisely,profiting from dimensional gradient structure and matched electrolyte of CoSe2@CNTs-MXene hold great application potential for stable sodium storage. 展开更多
关键词 CoSe2@CNTs-MXene Ether electrolyte In situ XRD DFT calculation Sodium-ion full battery
下载PDF
Fabrication of 3D hollow acorn-shell-like PtBi intermetallics via a surfactant-free pathway for efficient ethylene glycol electrooxidation 被引量:1
2
作者 Tingting Wan Xin Huang +7 位作者 Sichen Li Qiuyu Li Xianlong Yang zhenjie sun Dong Xiang Kun Wang Peng Li Manzhou Zhu 《Nano Research》 SCIE EI CSCD 2023年第5期6560-6567,共8页
The synthesis of atomically ordered Pt-based intermetallic electrocatalysts for the direct alcohol fuel cells generally requires the addition of surfactants or the high-temperature annealing.However,some residual surf... The synthesis of atomically ordered Pt-based intermetallic electrocatalysts for the direct alcohol fuel cells generally requires the addition of surfactants or the high-temperature annealing.However,some residual surfactants on the surface of the assynthesized catalysts would prevent the exposure of catalytic active sites,the high-temperature annealing process is easy to accelerate the sintering of the metal,which both lead to the decline of electrocatalytic performance.Herein,we construct the atomically ordered bimetallic PtBi intermetallics with clean surfaces and unique three-dimensional hollow acorn-shell-like structure(3D PtBi HASL)by a simple,low-temperature,surfactant-free one-pot synthetic approach.Benefiting from the special hollow structures,the obtained 3D PtBi HASL intermetallics expose abundant accessible active sites.Moreover,the introduction of oxophilic metal Bi can enhance adsorption of OHads,thereby significantly facilitating removal of poisoned intermediates.Density functional theory(DFT)simulations further indicate that formation of the PtBi intermetallic phase with the downshift of the Pt d-band center endows 3D Pt49.4Bi50.6 HASL intermetallics with significantly attenuated COads and enhanced OHads adsorption,bringing about the boosting electrocatalytic property.The mass activity of the 3D Pt49.4Bi50.6 HASL intermetallics for ethylene glycol oxidation reaction is as high as 24.67 A·mgPt^(−1),which is 12.98 times higher than that of commercial Pt/C(1.90 A·mgPt^(−1)).This work may inspire the design of Pt-based intermetallics as high-efficiency anode electrocatalysts for fuel cell applications. 展开更多
关键词 surfactant-free strategy PtBi intermetallic three-dimensional hollow structure electrocatalyst ethylene glycol oxidation reaction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部