Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an ...Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an inevitable trend for the future of health monitoring, and the construction of chips for detection faces major challenges. The response of sensors often fails to meet the requirements for chipbased detection of trace substances due to the low efficiency of interfacial heterogeneous reactions, necessitating a rational design approach for micro-and nano-structures to improve sensor performance with respect to sensitivity and detection limits. This review focuses on the influence of micro-and nanostructures that used in chip on sensing. Firstly, this review categorizes sensors into chemiresistors, electrochemical sensors, fluorescence sensors, and surface enhanced Raman scattering(SERS) sensors based on their sensing principle, which have significant applications in disease diagnosis. Subsequently, commencing from the application requirements in the field of sensing, this review focuses on the different structures of nanoparticle(NP) assemblies, including wire, layered, core-shell, hollow, concave and deformable structures. These structures change in the size, shape, and morphology of conventional structures to achieve characteristics such as ordered alignment, high specific surface area, space limitation,vertical diffusion, and swaying behavior with fluid, thereby addressing issues such as poor signal transmission efficiency, inadequate adsorption and capture capacity, and slow mass transfer speed during sensing. Finally, the design direction of micro-and nano-structures, and possible obstacles and solutions to promote chip-based detection have been discussed. It is hope that this article will inspire the exploration of interface micro-and nano-structures modulated sensing methods.展开更多
In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconducto...In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.展开更多
基金financially supported by the National Natural Science Foundation of China (No.21925405)。
文摘Changes in trace substances in human metabolites, which are related to disease processes and health status, can serve as chemical markers for disease diagnosis and symptom monitoring. Real-time online detection is an inevitable trend for the future of health monitoring, and the construction of chips for detection faces major challenges. The response of sensors often fails to meet the requirements for chipbased detection of trace substances due to the low efficiency of interfacial heterogeneous reactions, necessitating a rational design approach for micro-and nano-structures to improve sensor performance with respect to sensitivity and detection limits. This review focuses on the influence of micro-and nanostructures that used in chip on sensing. Firstly, this review categorizes sensors into chemiresistors, electrochemical sensors, fluorescence sensors, and surface enhanced Raman scattering(SERS) sensors based on their sensing principle, which have significant applications in disease diagnosis. Subsequently, commencing from the application requirements in the field of sensing, this review focuses on the different structures of nanoparticle(NP) assemblies, including wire, layered, core-shell, hollow, concave and deformable structures. These structures change in the size, shape, and morphology of conventional structures to achieve characteristics such as ordered alignment, high specific surface area, space limitation,vertical diffusion, and swaying behavior with fluid, thereby addressing issues such as poor signal transmission efficiency, inadequate adsorption and capture capacity, and slow mass transfer speed during sensing. Finally, the design direction of micro-and nano-structures, and possible obstacles and solutions to promote chip-based detection have been discussed. It is hope that this article will inspire the exploration of interface micro-and nano-structures modulated sensing methods.
基金supported by the 1000 Young Talents Programthe National Natural Science Foundation of China (21422507, 21321003, 215032337)Institute of Chemistry, Chinese Academy of Sciences
文摘In this paper, PbTe nanocubes are assembled on Bi_(0.5)Sb_(1.5)Te_3 substrates with both ordered and disordered structures through a straightforward method to form a P-N section. The work function of such semiconductor system is then measured by the ultraviolet photoelectron spectroscopy. This results show that the work function of orderly arrayed PbTe deposition is much lower than the disordered assemblies. Such change of the work function provides the possibility to tune it in a P-N section system. The change of the work function is attributed to the less surface roughness and easier electron escaping in the ordered structures.