期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Facile Modification on Buried Interface for Highly Efficient and Stable FASn_(0.5)Pb_(0.5)I_(3) Perovskite Solar Cells with NiOx Hole-Transport layers
1
作者 Hui Zhang Yuan Zhou +10 位作者 Tonghui Guo Xiang Zhang zhenkun zhu Junjun Jin Xiaxia Cui Dan Zhang Zhen Wang Lin Li Nai Wang Guanqi Tang Qidong Tai 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第23期3197-3204,共8页
Formamidinium(FA)-based Sn-Pb perovskite solar cells(FAPb_(0.5)Sn_(0.5)I_(3) PSCs)with ideal bandgap and impressive thermal stability have caught enormous attention recently.However,it still suffers from the challenge... Formamidinium(FA)-based Sn-Pb perovskite solar cells(FAPb_(0.5)Sn_(0.5)I_(3) PSCs)with ideal bandgap and impressive thermal stability have caught enormous attention recently.However,it still suffers from the challenge of realizing high efficiency due to the surface imperfections of the transport materials and the energy-level mismatch between functional contacts.Herein,it is demonstrated that the modification on buried interface with alkali metal salts is a viable strategy to alleviate these issues.We systematically investigate the role of three alkali metal bromide salts(NaBr,KBr,CsBr)by burying them between the NiOx hole transport layer(HTL)and the perovskite light-absorbing layer,which can effectively passivate interface defects,improve energy-level matching and release the internal residual strain in perovskite layers.The device with CsBr buffer layer exhibits the best power conversion efficiency(PCE)approaching 20%,which is one of the highest efficiencies for FA-based Sn-Pb PSCs employing NiO_(x) HTLs.Impressively,the long-term storage stability of the unencapsulated device is also greatly boosted.Our work provides an efficient strategy to prepare desired FA-based ideal-bandgap Sn-Pb PSCs which could be applied in tandem solar cells. 展开更多
关键词 Tin-lead perovskite solar cell Formamidinium Alkali metal bromide Efficiency Interfacial modification Stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部