Obesity is increasingly prevalent globally, searching for therapeutic agents acting on adipose tissue is of great importance. Equisetin(EQST), a meroterpenoid isolated from a marine sponge-derived fungus, has been rep...Obesity is increasingly prevalent globally, searching for therapeutic agents acting on adipose tissue is of great importance. Equisetin(EQST), a meroterpenoid isolated from a marine sponge-derived fungus, has been reported to display antibacterial and antiviral activities. Here, we revealed that EQST displayed anti-obesity effects acting on adipose tissue through inhibiting adipogenesis in vitro and attenuating HFD-induced obesity in mice, doing so without affecting food intake, blood pressure or heart rate.We demonstrated that EQST inhibited the enzyme activity of 11β-hydroxysteroid dehydrogenase type 1(11β-HSD1), a therapeutic target of obesity in adipose tissue. Anti-obesity properties of EQST were all offset by applying excessive 11β-HSD1’s substrates and 11β-HSD1 inhibition through knockdown in vitro or 11β-HSD1 knockout in vivo. In the 11β-HSD1 bypass model constructed by adding excess11β-HSD1 products, EQST’s anti-obesity effects disappeared. Furthermore, EQST directly bond to11β-HSD1 protein and presented remarkable better intensity on 11β-HSD1 inhibition and better efficacy on anti-obesity than known 11β-HSD1 inhibitor. Therefore, EQST can be developed into anti-obesity candidate compound, and this study may provide more clues for developing higher effective 11β-HSD1 inhibitors.展开更多
基金supported by the following grants:CXYJ-2021-04 from the Research Foundation of Capital Institute of Pediatrics(China)81573436 from National Natural Science Foundation of China2018ZX09711-001-001-016 from the Found of the National New Drug Innovation Major Project of China。
文摘Obesity is increasingly prevalent globally, searching for therapeutic agents acting on adipose tissue is of great importance. Equisetin(EQST), a meroterpenoid isolated from a marine sponge-derived fungus, has been reported to display antibacterial and antiviral activities. Here, we revealed that EQST displayed anti-obesity effects acting on adipose tissue through inhibiting adipogenesis in vitro and attenuating HFD-induced obesity in mice, doing so without affecting food intake, blood pressure or heart rate.We demonstrated that EQST inhibited the enzyme activity of 11β-hydroxysteroid dehydrogenase type 1(11β-HSD1), a therapeutic target of obesity in adipose tissue. Anti-obesity properties of EQST were all offset by applying excessive 11β-HSD1’s substrates and 11β-HSD1 inhibition through knockdown in vitro or 11β-HSD1 knockout in vivo. In the 11β-HSD1 bypass model constructed by adding excess11β-HSD1 products, EQST’s anti-obesity effects disappeared. Furthermore, EQST directly bond to11β-HSD1 protein and presented remarkable better intensity on 11β-HSD1 inhibition and better efficacy on anti-obesity than known 11β-HSD1 inhibitor. Therefore, EQST can be developed into anti-obesity candidate compound, and this study may provide more clues for developing higher effective 11β-HSD1 inhibitors.