期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Realizing efficient emission and triple-mode photoluminescence switching in air-stable tin(IV)-based metal halides via antimony doping and rational structural modulation
1
作者 Xuefei He Hui Peng +5 位作者 Qilin Wei Zhijie Zhou Guolun Zhang zhentao du Jialong Zhao Bingsuo Zou 《Aggregate》 EI CAS 2024年第1期257-269,共13页
Recently,many lead-free metal halides with diverse structures and highly efficient emission have been reported.However,their poor stability and single-mode emission color severely limit their applications.Herein,three... Recently,many lead-free metal halides with diverse structures and highly efficient emission have been reported.However,their poor stability and single-mode emission color severely limit their applications.Herein,three homologous Sb^(3+)-doped zero-dimensional(0D)air-stable Sn(IV)-based metal halides with different crystal structures were developed by inserting a single organic ligand into SnCl_(4)lattice,which brings different optical properties.Under photoexcitation,(C_(25)H_(22)P)SnC_(l5)@Sb⋅CH_(4O)(Sb^(3+)−1)does not emit light,(C_(25)H_(22)P)_(2)SnC_(l6)@Sb-α(Sb^(3+)−2α)shines bright yellow emission with a photoluminescence quantum yield(PLQY)of 92%,and(C_(25)H_(22)P)_(2)SnC_(l6)@Sb-β(Sb^(3+)−2β)exhibits intense red emission with a PLQY of 78%.The above three compounds show quite different optical properties should be due to their different crystal structures and the lattice distortions.Particularly,Sb^(3+)−1 can be successfully converted into Sb^(3+)−2αunder the treatment of C_(25)H_(22)PCl solution,accompanied by a transition from nonemission to efficient yellow emission,serving as a“turn-on”photoluminescence(PL)switching.Parallelly,a reversible structure conversion between Sb^(3+)−2αand Sb^(3+)−2βwas witnessed after dichloromethane or volatilization treatment,accompanied by yellow and red emission switching.Thereby,a triple-mode tunable PL switching of off-onI-onII can be constructed in Sb^(3+)-doped Sn(IV)-based compounds.Finally,we demonstrated the as-synthesized compounds in fluorescent anticounterfeiting,information encryption,and optical logic gates. 展开更多
关键词 information encryption Sb^(3+)-doping Sn(IV)-based metal halides structural modulation triple-mode
原文传递
Bifunctional hierarchical NiCoP@FeNi LDH nanosheet array electrocatalyst for industrial-scale high-current-density water splitting
2
作者 Liming Yang Tao Yang +6 位作者 Enhui Wang Xiangtao Yu Kang Wang zhentao du Sheng Cao Kuo-Chih Chou Xinmei Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期33-40,共8页
Aiming to design and prepare non-noble metal electrocatalysts for hydrogen production at high current density(HCD),NiCoP@FeNi LDH hierarchical nanosheets were deposited on nickel foam progressively us-ing a hydrotherm... Aiming to design and prepare non-noble metal electrocatalysts for hydrogen production at high current density(HCD),NiCoP@FeNi LDH hierarchical nanosheets were deposited on nickel foam progressively us-ing a hydrothermal-phosphorization-electrodeposition process.For hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),NiCoP@FeNi LDH/NF requires only 195 and 230 mV overpotentials to reach 1000 mA cm−2,respectively.For overall water splitting,only 1.70 V is required at 1000 mA cm−2.This is the largest value for non-noble metal-based electrocatalysts reported so far at HCD.The hierarchi-cal structure exhibits good electron transport capability and the porous-macroporous structure enhances the gas release rate,resulting in enhanced hydrogen production at HCD.Especially,the synergistic effect of NiCoP and FeNi LDH contributes to the adsorption-desorption equilibrium of intermediate radicals dur-ing the reaction process and ultimately enhances the catalytic activity.This work provides useful direction for industrial-scale hydrogen production applications at HCD. 展开更多
关键词 High-current-density Overall water splitting Hydrogen evolution reaction Oxygen evolution reaction
原文传递
Textured CsPbI_(3)nanorods composite fibers for stable high output piezoelectric energy harvester
3
作者 Tao Yang Dengzhou Jia +8 位作者 Bing Xu Yongfei Hao Yanglong Hou Kang Wang Enhui Wang zhentao du Sheng Cao Kuo-Chih Chou Xinmei Hou 《eScience》 2024年第5期150-159,共10页
The utilization of piezoelectric nanogenerator(PENG)based on halide perovskite materials has demonstrated significant promise for energy harvesting applications.However,the challenge of synthesizing halide perovskite ... The utilization of piezoelectric nanogenerator(PENG)based on halide perovskite materials has demonstrated significant promise for energy harvesting applications.However,the challenge of synthesizing halide perovskite materials with both high output performance and stability using a straightforward process persists as a substantial obstacle.Herein,we present the fabrication of CsPbI_(3)nanorods(NRs)exhibiting highly uniform orientation within polyvinylidene fluoride(PVDF)fibers through a simple texture engineering approach,marking the instance of enhancing PENG performance in this manner.The resultant composite fibers showcase a short-circuit current density(I_(sc))of 0.78μAcm^(-2)and an open-circuit voltage(V_(oc))of 81V,representing a 2.5 fold increase compared to the previously reported highest value achieved without the electric poling process.This outstanding output performance is ascribed to the orientation of CsPbI_(3)NRs facilitated by texture engineering and dipole poling via the self-polarization effect.Additionally,the PENG exhibits exceptional thermal and water stability,rendering it suitable for deployment in diverse and challenging environmental conditions.Our findings underscore the significant potential of textured CsPbI_(3)NRs composite fibers for powering low-power consumer electronics,including commercial LEDs and electronic watches. 展开更多
关键词 Texture engineering CsPbI_(3) Piezoelectric nanogenerator SELF-POLARIZATION ELECTROSPINNING
原文传递
In situ reduced MXene/AuNPs composite toward enhanced charging/discharging and specific capacitance 被引量:3
4
作者 Zixiang ZHENG Wei WU +5 位作者 Tao YANG Enhui WANG zhentao du Xinmei HOU Tongxiang LIANG Hailong WANG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第5期1061-1071,共11页
In this work,gold nanoparticles(AuNPs)decorated Ti_(3)C_(2)T_(x) nanosheets(MXene/AuNPs composite)are fabricated through a self-reduction reaction of Ti_(3)C_(2)T_(x) nanosheets with HAuCl_(4) aqueous solution.The obt... In this work,gold nanoparticles(AuNPs)decorated Ti_(3)C_(2)T_(x) nanosheets(MXene/AuNPs composite)are fabricated through a self-reduction reaction of Ti_(3)C_(2)T_(x) nanosheets with HAuCl_(4) aqueous solution.The obtained composite is characterized as AuNPs with the diameter of about 23 nm uniformly dispersing on nanosheets without aggregation.The composite(MXene decorated on 4.8 wt% AuNPs)is further employed to construct supercapacitor for the first time with a higher specific capacitance of 278 F·g^(-1) at 5 mV·s^(-1) than that of pure Ti_(3)C_(2)T_(x) and 95% of cyclic stability after 10,000 cycles.Furthermore,MXene/AuNPs composite symmetric supercapacitor with filter paper as separator and H_(2)SO_(4) as electrolyte,is assembled.The supercapacitor exhibits a high volumetric energy density of 8.82 Wh·L^(-1) at a power density of 264.6 W·L^(-1) and ultrafast-charging/discharging performance.It exhibits as a promising candidate applied in integrated and flexible supercapacitors. 展开更多
关键词 SUPERCAPACITORS MXene gold nanoparticles(AuNPs) self-reduction COMPOSITE
原文传递
Boosting electroluminescence performance of all solution processed In P based quantum dot light emitting diodes using bilayered inorganic hole injection layers
5
作者 QIUYAN LI SHENG CAO +5 位作者 PENG YU MEIJING NING KE XING zhentao du BINGSUO ZOU JIALONG ZHAO 《Photonics Research》 SCIE EI CAS CSCD 2022年第9期2133-2139,共7页
The development of high-performance In P-based quantum dot light-emitting diodes(QLEDs)has become the current trend in ecofriendly display and lighting technology.However,compared with Cd-based QLEDs that have already... The development of high-performance In P-based quantum dot light-emitting diodes(QLEDs)has become the current trend in ecofriendly display and lighting technology.However,compared with Cd-based QLEDs that have already been devoted to industry,the efficiency and stability of In P-based QLEDs still face great challenges.In this work,colloidal Ni Oxand Mg-doped Ni Oxnanocrystals were used to prepare a bilayered hole injection layer(HIL)to replace the classical polystyrene sulfonate(PEDOT:PSS)HIL to construct high-performance In Pbased QLEDs.Compared with QLEDs with a single HIL of PEDOT:PSS,the bilayered HIL enables the external quantum efficiencies of the QLEDs to increase from 7.6%to 11.2%,and the T_(95)lifetime(time that the device brightness decreases to 95%of its initial value)under a high brightness of 1000 cd m^(-2)to prolong about 7 times.The improved performance of QLEDs is attributed to the bilayered HIL reducing the mismatched potential barrier of hole injection,narrows the potential barrier difference of indium tin oxide(ITO)/hole transport layer interface to promote carrier balance injection,and realizes high-efficiency radiative recombination.The experimental results indicate that the use of bilayered HILs with p-type Ni Oxmight be an efficient method for fabricating high-performance In P-based QLEDs. 展开更多
关键词 DIODES injection PERFORMANCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部