期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Enhancing oxidation reaction over Pt-MnO_(2) catalyst by activation of surface oxygen
1
作者 Ruoting Shan zhenteng sheng +6 位作者 Shuo Hu Hongfei Xiao Yuhua Zhang Jianghao Zhang Li Wang Changbin Zhang Jinlin Li 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2023年第12期117-125,共9页
Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we act... Formaldehyde(HCHO) and carbon monoxide(CO) are both common air pollutants and hazardous to human body. It is imperative to develop the catalyst that is able to efficiently remove these pollutants. In this work, we activated Pt-MnO_(2)under different conditions for highly active oxidation of HCHO and CO, and the catalyst activated under CO displayed superior performance. A suite of complementary characterizations revealed that the catalyst activated with CO created the highly dispersed Pt nanoparticles to maintain a more positively charged state of Pt, which appropriately weakens the Mn-O bonding strength in the adjacent region of Pt for efficient supply of active oxygen during the reaction. Compared with other catalysts activated under different conditions, the CO-activated Pt-MnO_(2)displays much higher activity for oxidation of HCHO and CO. This research contributes to elucidating the mechanism for regulating the oxidation activity of Pt-based catalyst. 展开更多
关键词 Pt/MnO_(2)catalysts HCHO abatement CO abatement Catalytic oxidation Activation of surface oxygen
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部