期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Solvability of monotone tensor complementarity problems
1
作者 Liping Zhang Defeng Sun zhenting luan 《Science China Mathematics》 SCIE CSCD 2023年第3期647-664,共18页
The tensor complementarity problem is a special instance in the class of nonlinear complementarity problems, which has many applications in multi-person noncooperative games, hypergraph clustering problems and traffic... The tensor complementarity problem is a special instance in the class of nonlinear complementarity problems, which has many applications in multi-person noncooperative games, hypergraph clustering problems and traffic equilibrium problems. Two most important research issues are how to identify the solvability and how to solve such a problem via analyzing the structure of the involved tensor. In this paper, based on the concept of monotone mappings, we introduce a new class of structured tensors and the corresponding monotone tensor complementarity problem. We show that the solution set of the monotone tensor complementarity problem is nonempty and compact under the feasibility assumption. Moreover, a necessary and sufficient condition for ensuring the feasibility is given via analyzing the structure of the involved tensor. Based on the Huber function,we propose a regularized smoothing Newton method to solve the monotone tensor complementarity problem and establish its global convergence. Under some mild assumptions, we show that the proposed algorithm is superlinearly convergent. Preliminary numerical results indicate that the proposed algorithm is very promising. 展开更多
关键词 tensor complementarity problem Huber function MONOTONE smoothing Newton method superlinear convergence
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部