期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Porous FeO_x/BiVO_(4-δ)S_(0.08): Highly efcient photocatalysts for the degradation of Methylene Blue under visible-light illumination 被引量:4
1
作者 zhenxuan zhao Hongxing Dai +6 位作者 Jiguang Deng Yuxi Liu Yuan Wang Xinwei Li Guangmei Bai Baozu Gao Chak Tong Au 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第10期2138-2149,共12页
Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-δS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol... Porous S-doped bismuth vanadate with an olive-like morphology and its supported iron oxide (y wt.% FeOx/BiVO4-δS0.08, y = 0.06, 0.76, and 1.40) photocatalysts were fabricated using the dodecylamine-assisted alcohol-hydrothermal and incipient wetness impregnation methods, respectively. It is shown that the y wt.% FeOx/BiVO4-δS0.08 photocatalysts contained a monoclinic scheetlite BiVO4 phase with a porous olive-like morphology, a surface area of 8.8-9.2 m^2/g, and a bandgap energy of 2.38-2.42 eV. There was co-presence of surface Bi^5+, Bi^3+, V^5+, V^3+, Fe^3+, and Fe^2+ species in y wt.% FeOx/BiVO4-δS0.08. The 1.40 wt.% FeOx/BiVO4-δS0.08 sample performed the best for Methylene Blue degradation under visible-light illumination. The photocatalytic mechanism was also discussed. We believe that the sulfur and FeOx co-doping, higher oxygen adspecies concentration, and lower baudgap energy were responsible for the excellent visible-light-driven catalytic activity of 1.40 wt.% FeOx/BiVO4-δS0.08. 展开更多
关键词 sulfur-doped bismuth vanadate supported iron oxide visible-light-driven photocatalyst porous morphology Methylene Blue degradation
原文传递
Monolithic integration of flexible lithium-ion battery on a plastic substrate by printing methods 被引量:3
2
作者 zhenxuan zhao Huaqiang Wu 《Nano Research》 SCIE EI CAS CSCD 2019年第10期2477-2484,共8页
En ergy storage devices with flexible form factor have become critical components of wearable electr onic systems.In spired by methods of monolithic integration in the microelectronics fabrication process,we propose a... En ergy storage devices with flexible form factor have become critical components of wearable electr onic systems.In spired by methods of monolithic integration in the microelectronics fabrication process,we propose a planar flexible full-solid-state lithium-ion battery(FSLB)architecture and a layer-by-layer stencil printing assembly method for fabricating batteries on polyethylene terephthalate(PET)substrate.FSLBs use quasi-solid electrolyte based on LiTFSI and ultraviolet(UV)-curable ethoxylated trimethylolpropane triacrylate(ETPTA)polymeric matrix in combination with Li4Ti50i2(LTO)/LiFePO4(LFP)-based electrodes.Excellent mechanical flexibility(<10 mm bending radius)can be achieved.The electrochemical characteristics of electrolyte,including ion conductivity,physical stability during room-temperature and tender assembly processes,are promising.A complete thin film-shape FSLB demonstrated working operation both under planar and bending conditions.The unique architecture and assembly processes open new ways for planar flexible devices to be integrated with flexible energy devices. 展开更多
关键词 FLEXIBLE printable full-solid-state BATTERY LITHIUM-ION BATTERY polymer ELECTROLYTE
原文传递
Conductive metallic filaments dominate in hybrid perovskite-based memory devices 被引量:4
3
作者 Yang Huang zhenxuan zhao +4 位作者 Chen Wang Hongbo Fan Yiming Yang Jiming Bian Huaqiang Wu 《Science China Materials》 SCIE EI CSCD 2019年第9期1323-1331,共9页
Organic-inorganic hybrid perovskites (OHPs) are well-known as light-absorbing materials in solar cells and have recently attracted considerable attention for the applications in resistive switching memory. Previous st... Organic-inorganic hybrid perovskites (OHPs) are well-known as light-absorbing materials in solar cells and have recently attracted considerable attention for the applications in resistive switching memory. Previous studies have shown that ions can migrate to form a conductive channel in perovskites under an external voltage. However, the exact resistance mechanism for Ag or halogens which dominate the resistive behavior is still controversial. Here, we demonstrate a resistive switching memory device based on Ag/FA0.83MA0.17Pb(I0.82Br0.18)3/fluorine doped tin oxide (FTO). The migration of Ag cations and halide anions is demonstrated by energy dispersive X-ray spectroscopy (EDS) after the SET process (positive voltage on Ag). By comparing the I-V behavior of the Au-based devices, it is clear that the conductive channel formed by Ag is the main factor of the switching characteristics for Ag-based devices. Meanwhile, by controlling the appropriate SET voltage, two kinds of resistance characteristics of the analog switch and threshold switch can be realized in the Ag-based device. As a result, it may be possible to implement both data storage and neuromorphic computing in a single device. 展开更多
关键词 Ag filament perovskite memory analog switch threshold switch resistance mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部