期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Terahertz phononic crystal in plasmonic nanocavity
1
作者 zhenyao li Haonan Chang +6 位作者 Jia-Min Lai Feilong Song Qifeng Yao Hanqing liu Haiqiao Ni Zhichuan Niu Jun Zhang 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期94-100,共7页
Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtai... Interaction between photons and phonons in cavity optomechanical systems provides a new toolbox for quantum information technologies.A GaAs/AlAs pillar multi-optical mode microcavity optomechanical structure can obtain phonons with ultra-high frequency(~THz).However,the optical field cannot be effectively restricted when the diameter of the GaAs/AlAs pillar microcavity decreases below the diffraction limit of light.Here,we design a system that combines Ag nanocav-ity with GaAs/AlAs phononic superlattices,where phonons with the frequency of 4.2 THz can be confined in a pillar with~4 nm diameter.The Q_(c)/V reaches 0.22 nm^(-3),which is~80 times that of the photonic crystal(PhC)nanobeam and~100 times that of the hybrid point-defect PhC bowtie plasmonic nanocavity,where Q_(c) is optical quality factor and V is mode volume.The optome-chanical single-photon coupling strength can reach 12 MHz,which is an order of magnitude larger than that of the PhC nanobeam.In addition,the mechanical zero-point fluctuation amplitude is 85 fm and the efficient mass is 0.27 zg,which is much smaller than the PhC nanobeam.The phononic superlattice-Ag nanocavity optomechanical devices hold great potential for applications in the field of integrated quantum optomechanics,quantum information,and terahertz-light transducer. 展开更多
关键词 OPTOMECHANICS phononic crystal Ag plasmonic nanocavity CONFINEMENT COUPLING
下载PDF
Review of phonons in moiré superlattices
2
作者 zhenyao li Jia-Min Lai Jun Zhang 《Journal of Semiconductors》 EI CAS CSCD 2023年第1期56-67,共12页
Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affecte... Moirépatterns in physics are interference fringes produced when a periodic template is stacked on another similar one with different displacement and twist angles.The phonon in two-dimensional(2D)material affected by moirépatterns in the lattice shows various novel physical phenomena,such as frequency shift,different linewidth,and mediation to the superconductivity.This review gives a brief overview of phonons in 2D moirésuperlattice.First,we introduce the theory of the moiréphonon modes based on a continuum approach using the elastic theory and discuss the effect of the moirépattern on phonons in 2D materials such as graphene and MoS_(2).Then,we discuss the electron-phonon coupling(EPC)modulated by moirépatterns,which can be detected by the spectroscopy methods.Furthermore,the phonon-mediated unconventional superconductivity in 2D moirésuperlattice is introduced.The theory of phonon-mediated superconductivity in moirésuperlattice sets up a general framework,which promises to predict the response of superconductivity to various perturbations,such as disorder,magnetic field,and electric displacement field. 展开更多
关键词 moirépattern moiréphonon electron-phonon coupling SUPERCONDUCTIVITY
下载PDF
Experimental and numerical investigation of threedimensional vortex structures of a pitching airfoil at a transitional Reynolds number 被引量:5
3
作者 zhenyao li lihao FENG +2 位作者 Hamid Reza KARBASIAN Jinjun WANG Kyung Chun KIM 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第10期2254-2266,共13页
This research examines the vortex behaviors and aerodynamic forces in dynamic stall phenomena at a transitional Reynolds number(Re=90000)using experimental and numerical approaches.Periodic sinusoidal pitching motion ... This research examines the vortex behaviors and aerodynamic forces in dynamic stall phenomena at a transitional Reynolds number(Re=90000)using experimental and numerical approaches.Periodic sinusoidal pitching motion at two different reduced frequencies is used to achieve the dynamic stall of a NACA 0012 airfoil.Several leading edge vortices form and detach in the dynamic stall stage.The flow then quickly transitions to a full separation zone in the stall stage when the angle of attack starts to decrease.There is discrepancy between the phaseaveraged and instantaneous flow field in that the small flow structures increased with angle of attack,which is a characteristic of the flow field at the transitional Reynolds number.The interaction between the streamwise vortices in the three-dimensional numerical results and the leading edge vortex are the main contribution to the turbulent flow.In addition,the leading edge vortex that supplies vortex lift is more stable at higher reduced frequency,which decreases the lift fluctuation in the dynamic stall stage.The leading edge vortex at higher reduced frequency is strong enough to stabilize the flow,even when the airfoil is in the down-stroke phase. 展开更多
关键词 DDES Dynamic STALL PITCHING AIRFOIL PIV Transitional REYNOLDS number
原文传递
Individual influence of pitching and plunging motions on flow structures over an airfoil during dynamic stall 被引量:3
4
作者 zhenyao li lihao FENG Jinjun WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2020年第3期840-851,共12页
The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags... The individual influence of pitching and plunging motions on flow structures is studied experimentally by changing the phase lag between the geometrical angle of attack and the plunging angle of attack.Five phase lags are chosen as the experimental parameters,while the Strouhal number,the reduced frequency and the Reynolds number are fixed.During the motion of the airfoil,the leading edge vortex,the reattached vortex and the secondary vortex are observed in the flow field.The leading edge vortex is found to be the main flow structure through the proper orthogonal decomposition.The increase of phase lag results in the increase of the leading edge velocity,which strongly influences the leading edge shear layer and the leading edge vortex.The plunging motion contributes to the development of the leading edge shear layer,while the pitching motion is the key reason for instability of the leading edge shear layer.It is also found that a certain increase of phase lag,around 34.15°in this research,can increase the airfoil lift. 展开更多
关键词 Dynamic stall Leading edge vortex Phase lag Pitching and plunging airfoil Vortex dynamics
原文传递
Numerical study of steady flow characteristics of a rear variable-area bypass injector with alternating area regulator
5
作者 Runfu liU zhenyao li +3 位作者 Huiliu ZHANG Qixing WANG Yue HUANG Yancheng YOU 《Chinese Journal of Aeronautics》 SCIE EI CAS 2024年第5期180-198,共19页
The mixing effectiveness of the airflow between the inner and outer bypass inlets of a Rear Variable-Area Bypass Injector(RVABI)is the key to the afterburner performance of variable cycle engines.This paper describes ... The mixing effectiveness of the airflow between the inner and outer bypass inlets of a Rear Variable-Area Bypass Injector(RVABI)is the key to the afterburner performance of variable cycle engines.This paper describes an optimized RVABI design based on an alternating area regulator to improve the velocity/temperature uniformity of the incoming flow at the afterburner.Compared with a classical RVABI,numerical simulations show that the proposed alternating RVABI performs better in terms of thermal mixing efficiency and total pressure loss in different variable cycle engine modes.Both the increasing air contact area between the inner and outer bypass of alternating structure RVABI,and a larger streamwise vortex in the inner bypass inlet due to the proposed alternating lobe structure in the RVABI contribute to the significantly increase of mixing effectiveness.Besides,the alternating regulator induces strong streamwise vortex,which helps to improve the airflow mixing with its vortex-induced velocity.The interaction between the streamwise vortex and azimuthal vortex further promises the velocity/temperature uniformity after the RVABI.With the increase of alternating lobe’s height ratio,the covering area of the streamwise vortex and the azimuthal vortex is enlarged,which further enhances the thermal mixing efficiency of the RVABI.This design gives an insight into the future design and optimization of RVABI. 展开更多
关键词 Alternating area regulator Lobed mixer Variable cycle engine Rear Variable-Area Bypass Injector(RVABI) Streamwise vortex
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部