期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Lamellar-stacked cobalt-based nanopiles integrated with nitrogen/sulfur co-doped graphene as a bifunctional electrocatalyst for ultralong-term zinc-air batteries
1
作者 Lingxue Meng Wenwei Liu +6 位作者 Yang Lu zhenyi liang Ting He Jinying Li Haoxiong Nan Shengxu Luo Jia Yu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期633-641,I0014,共10页
Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition ... Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries. 展开更多
关键词 Lamellar-stacking nanopile Co_(3)O_(4) Anionic regulation Oxygen evolution reaction Oxygen reduction reaction Zinc–air battery
下载PDF
A viral protein orchestrates rice ethylene signaling to coordinate viral infection and insect vector-mediated transmission 被引量:8
2
作者 Yaling Zhao Xue Cao +12 位作者 Weihua Zhong Shunkang Zhou Zhanbiao Li Hong An Xiahua Liu Ruifeng Wu Surakshya Bohora Yan Wu zhenyi liang Jiahao Chen Xin Yang Guohui Zhou Tong Zhang 《Molecular Plant》 SCIE CAS CSCD 2022年第4期689-705,共17页
Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus... Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus that is frequently transmitted by planthoppers. However, the molecular mechanisms underlying its propagation in the host plants and epidemics in the field are largely unknown. Here, we showed that the SRBSDV-encoded P6 protein is a key effector that regulates rice ethylene signaling to coordinate viral infection and transmission. In early SRBSDV infection, P6 interacts with OsRTH2 in the cytoplasm to activate ethylene signaling and enhance SRBSDV proliferation;this also repels the insect vector to reduce infestation. In late infection, P6 enters the nucleus, where it interacts with OsEIL2, a key transcription factor of ethylene signaling. The P6-OsEIL2 interaction suppresses ethylene signaling by preventing the dimerization of OsEIL2, thereby facilitating viral transmission by attracting the insect vector. Collectively, these findings reveal a novel molecular mechanism by which an arbovirus modulates the host defense system to promote viral infection and transmission. 展开更多
关键词 ARBOVIRUSES ethylene signaling host-virus-vector interaction SRBSDV OsRTH2 OsEIL2
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部