Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition ...Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries.展开更多
Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus...Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus that is frequently transmitted by planthoppers. However, the molecular mechanisms underlying its propagation in the host plants and epidemics in the field are largely unknown. Here, we showed that the SRBSDV-encoded P6 protein is a key effector that regulates rice ethylene signaling to coordinate viral infection and transmission. In early SRBSDV infection, P6 interacts with OsRTH2 in the cytoplasm to activate ethylene signaling and enhance SRBSDV proliferation;this also repels the insect vector to reduce infestation. In late infection, P6 enters the nucleus, where it interacts with OsEIL2, a key transcription factor of ethylene signaling. The P6-OsEIL2 interaction suppresses ethylene signaling by preventing the dimerization of OsEIL2, thereby facilitating viral transmission by attracting the insect vector. Collectively, these findings reveal a novel molecular mechanism by which an arbovirus modulates the host defense system to promote viral infection and transmission.展开更多
基金supported by the National Natural Science Foundation of China (21905157,22279077,21905056)the Hainan Provincial Natural Science Foundation of China (221RC452)+1 种基金the Start-up Research Foundation of Hainan University (KYQD (ZR)21059,KYQD (ZR)-21063)the Natural Science Foundation of Shanghai (22ZR1424500)。
文摘Sluggish oxygen evolution reaction(OER)and oxygen reduction reaction(ORR)kinetics inevitably impede the practical performance of rechargeable zinc-air batteries.Thus,combing the structural designability of transition metal-based electrocatalysts with anionic regulation is highly desired.Herein,mesoporous lamellar-stacked cobalt-based nanopiles with surface-sulfurization modification are elaborately designed and integrated with N/S co-doped graphene to build a robust OER/ORR bifunctional electrocatalyst.The lamellar-stacking mode of mesoporous nanosheets with abundant channels accelerates gas-liquid mass transfer,and partial-sulfurization of cobalt-based matrix surface efficiently improves the intrinsic OER activity.Meanwhile,N/S co-doped graphene further reinforces the ORR active sites while providing a stable conductive skeleton.As expected,this composite electrocatalyst delivers considerable bifunctional activity and stability,with an OER overpotential of 323 m V at 10 m A cm^(-2)and high durability.When applied in zinc-air batteries,remarkable ultralong-term stability over 4000 cycles and a maximum power density of 150.1 m W cm^(-2)are achieved.This work provides new insight into structurecomposition synergistic design of rapid-kinetics OER/ORR bifunctional electrocatalyst for nextgeneration metal-air batteries.
基金funded by the National Natural Science Foundation of China(31871928,31671993)the Guangdong Special Branch Plan for Young Talent with Scientific and Technological Innovation(2019TQ05N158)+2 种基金the Pearl River S&T Nova Program of Guangzhou(201906010093)the Research and Development Project in Major Fields of Guangdong(2019B020238001)the Guangdong Provincial Innovation Team for General Key Technologies in Modern Agricultural Industry(2019KJ133).
文摘Arthropod-borne viruses cause serious threats to human health and global agriculture by rapidly spreading via insect vectors. Southern rice black-streaked dwarf virus (SRBSDV) is the most damaging rice-infecting virus that is frequently transmitted by planthoppers. However, the molecular mechanisms underlying its propagation in the host plants and epidemics in the field are largely unknown. Here, we showed that the SRBSDV-encoded P6 protein is a key effector that regulates rice ethylene signaling to coordinate viral infection and transmission. In early SRBSDV infection, P6 interacts with OsRTH2 in the cytoplasm to activate ethylene signaling and enhance SRBSDV proliferation;this also repels the insect vector to reduce infestation. In late infection, P6 enters the nucleus, where it interacts with OsEIL2, a key transcription factor of ethylene signaling. The P6-OsEIL2 interaction suppresses ethylene signaling by preventing the dimerization of OsEIL2, thereby facilitating viral transmission by attracting the insect vector. Collectively, these findings reveal a novel molecular mechanism by which an arbovirus modulates the host defense system to promote viral infection and transmission.