The morphing trailing edge based compliant mechanism is a developing technology which can increase lift-drag ratio for variable flight modes by bending down the trailing edge.Composite material design is integrated in...The morphing trailing edge based compliant mechanism is a developing technology which can increase lift-drag ratio for variable flight modes by bending down the trailing edge.Composite material design is integrated into topology optimization for the morphing trailing edge based compliant mechanism in the paper.A two-step optimization strategy is established to solve the integrated design problem.Initially,lamination parameters are introduced and viewed as a bridge between structure stiffness and fiber angles for composite material.Design variables include the lamination parameters and element density.The least-squares between actual and desired displacements at output points along trailing edge is adopted to evaluate the deformed capability of the trailing edge.An integrated optimization model for the composite morphing trailing edge is established with the volume constraints.The optimal topologic shape and lamination parameters are initially obtained.Subsequently,a least-squares optimization between fiber angles and the optimal lamination parameters is implemented to obtain optimal fiber angles.Finally,morphing capability of composites trailing edge based compliant mechanism is investigated by simulation and experiments.The results indicate the composites trailing edge based compliant mechanism can approximately bend down 8 degrees and satisfies the design requirement.展开更多
基金co-supported by the National Natural Science Foundation of China(Nos.51375383 and 51575443)Natural Science Foundation of Shaanxi Province of China(No.2019JQ-728)Doctor’s Research Foundation of Xi’an University of Technology of China(No.102-451118017)。
文摘The morphing trailing edge based compliant mechanism is a developing technology which can increase lift-drag ratio for variable flight modes by bending down the trailing edge.Composite material design is integrated into topology optimization for the morphing trailing edge based compliant mechanism in the paper.A two-step optimization strategy is established to solve the integrated design problem.Initially,lamination parameters are introduced and viewed as a bridge between structure stiffness and fiber angles for composite material.Design variables include the lamination parameters and element density.The least-squares between actual and desired displacements at output points along trailing edge is adopted to evaluate the deformed capability of the trailing edge.An integrated optimization model for the composite morphing trailing edge is established with the volume constraints.The optimal topologic shape and lamination parameters are initially obtained.Subsequently,a least-squares optimization between fiber angles and the optimal lamination parameters is implemented to obtain optimal fiber angles.Finally,morphing capability of composites trailing edge based compliant mechanism is investigated by simulation and experiments.The results indicate the composites trailing edge based compliant mechanism can approximately bend down 8 degrees and satisfies the design requirement.