期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
ZmMs33 promotes anther elongation via modulating cell elongation regulators,metabolic homeostasis,and cell wall remodeling in maize
1
作者 Ziwen Li Taotao Zhu +7 位作者 Shuangshuang Liu Lina Zhao Xueli An Yan Long Xun Wei Juan Zhang zhenying dong Xiangyuan Wan 《The Crop Journal》 SCIE CSCD 2023年第2期361-373,共13页
Plant cell elongation depends on well-defined gene regulations,adequate nutrients,and timely cell wall modifications.Anther size is positively correlated with the number and viability of pollen grains,while little is ... Plant cell elongation depends on well-defined gene regulations,adequate nutrients,and timely cell wall modifications.Anther size is positively correlated with the number and viability of pollen grains,while little is known about molecular mechanisms underlying anther cell elongation.Here,we found that properly activated cell elongation regulators at transcriptional levels in loss-of-function ZmMs33 mutant(ms33-6038)anthers failed to promote maize anther elongation.ZmMs33 deficiency disrupted metabolic homeostasis mainly by inhibiting both photosynthesis in anther endothecium and lipid accumulation in anther tapetum.Importantly,ms33-6038 anthers displayed ectopic,premature and excessive secondary cell wall thickening in anther middle layer,which constrained cell elongation structurally and blocked nutrient flows across different anther wall layers.The metabolic disorder was only found in ms33-6038 mutant rather than several representative male-sterility lines at transcriptional and post-translational levels.Collectively,the disordered metabolisms and blocked nutrient flows defeated the activated cell elongation regulators,and finally inhibited anther elongation and growth with a unique‘‘idling effect”in ms33-6038 mutant. 展开更多
关键词 ZmMS33 Anther cell elongation Metabolic homeostasis Secondary cell wall thickening Male sterility MAIZE
下载PDF
Molecular genetic and genomic analysis of wheat milling and end-use traits in China:Progress and perspectives 被引量:5
2
作者 Daowen Wang Kunpu Zhang +4 位作者 Lingli dong zhenying dong Yiwen Li Abrar Hussain Huijie Zhai 《The Crop Journal》 SCIE CAS CSCD 2018年第1期68-81,共14页
Wheat is the most widely cultivated staple food crop, and multiple types of food derivatives are processed and consumed globally. Wheat grain quality(WGQ) is central to food processing and nutritional value, and is a ... Wheat is the most widely cultivated staple food crop, and multiple types of food derivatives are processed and consumed globally. Wheat grain quality(WGQ) is central to food processing and nutritional value, and is a decisive factor for consumer acceptance and commercial value of wheat cultivars. Hence, improvement in WGQ traits is top priority for both conventional and molecular wheat breeding. In this review we will focus on two important WGQ traits, grain milling and end-use, and will summarize recent progress in China. Chinese scientists have invested substantial effort in molecular genetic and genomic analysis of these traits and their effects on end-use properties. The insights and resources generated have contributed to the understanding and improvement of these traits. As high-quality genomics information and powerful genome engineering tools are becoming available for wheat, more fundamental breakthroughs in dissecting the molecular and genomic basis of WGQ are expected. China will strive to make further significant contributions to the study and improvement of WGQ in the genomics era. 展开更多
关键词 GENOMICS GLUTEN protein GRAIN HARDNESS PUROINDOLINE Wheat GRAIN quality
下载PDF
ZmMs30 Encoding a Novel GDSL Lipase Is Essential for Male Fertility and Valuable for Hybrid Breeding in Maize 被引量:15
3
作者 Xueli An zhenying dong +17 位作者 Youhui Tian Ke Xie Suowei Wu Taotao Zhu Danfeng Zhang Van Zhou Canfang Niu Biao Ma Quancan Hou Jianxi Bao Simiao Zhang Ziwen Li Yanbo Wang Tingwei Yan Xiaojing Sun Yuwen Zhang Jinping Li Xiangyuan Wan 《Molecular Plant》 SCIE CAS CSCD 2019年第3期343-359,共17页
Genic male sterility (GMS) is very useful for hybrid vigor utilization and hybrid seed production. Although a large number of GMS genes have been identified in plants, little is known about the roles of GDSL lipase me... Genic male sterility (GMS) is very useful for hybrid vigor utilization and hybrid seed production. Although a large number of GMS genes have been identified in plants, little is known about the roles of GDSL lipase members in anther and pollen development. Here, we report a maize GMS gene, ZmMs30, which encodes a novel type of GDSL lipase with diverged catalytic residues. Enzyme kinetics and activity assays show that ZmMs30 has lipase activity and prefers to substrates with a short carbon chain. ZmMs30 is specifically expressed in maize anthers during stages 7-9. Loss of ZmMs30 function resulted in defective anther cuticle, irregular foot layer of pollen exine, and complete male sterility. Cytological and lipidomics analyses demonstrate that ZmMs30 is crucial for the aliphatic metabolic pathway required for pollen exine formation and anther cuticle development. Furthermore, we found that male sterility caused by loss of ZmMs30 function was stable in various inbred lines with different genetic background, and that it didn't show any negative effect on maize heterosis and production, suggesting that ZmMs30 is valuable for crossbreeding and hybrid seed production. We then developed a new multi-control sterility system using ZmMs30 and its mutant line, and demonstrated it is feasible for generating desirable GMS lines and valu. able for hybrid maize seed production. Taken together, our study sheds new light on the mechanisms of anther and pollen development, and provides a valuable male-sterility system for hybrid breeding maize. 展开更多
关键词 ZmMs30f GDSL LIPASE multi-control STERILITY (MCS) system hybrid SEED production MAIZE
原文传递
Maize Genic Male-Sterility Genes and Their Applications in Hybrid Breeding: Progress and Perspectives 被引量:25
4
作者 Xiangyuan Wan Suowei Wu +5 位作者 Ziwen Li zhenying dong Xueli An Biao Ma Youhui Tian Jinping Li 《Molecular Plant》 SCIE CAS CSCD 2019年第3期321-342,共22页
As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions i... As one of the most important crops, maize not only has been a source of the food, feed, and industrial feedstock for biofuel and bioproducts, but also became a model plant system for addressing fundamental questions in genetics. Male sterility is a very useful trait for hybrid vigor utilization and hybrid seed production. The identification and characterization of genic male-sterility (GMS) genes in maize and other plants have deepened our understanding of the molecular mechanisms controlling anther and pollen development, and enabled the development and efficient use of many biotechnology-based male-sterility (BMS) systems for crop hybrid breeding. In this review, we summarize main advances on the identification and characterization of GMS genes in maize, and con struct a putative regulatory network controlling maize anther and pollen development by comparative genomic analysis of GMS genes in maize, Arabidopsis, and rice. Furthermore, we discuss and appraise the features of more than a dozen BMS systems for propagating male-sterile lines and producing hybrid seeds in maize and other plants. Finally, we provide our perspectives on the studies of GMS genes and the development of novel BMS systems in maize and other plants. The continuous exploration of GMS genes and BMS systems will enhance our understanding of molecular regulatory networks controlling male fertility and greatly facilitate hybrid vigor utilization in breeding and field production of maize and other crops. 展开更多
关键词 genic male sterility anther and pollen development biotechnology-based male-sterility system hybrid seed production MAIZE
原文传递
Normal Structure and Function of Endothecium Chloroplasts Maintained by ZmMs33-Mediated Lipid Biosynthesis in Tapetal Cells Are Critical for Anther Development in Maize 被引量:10
5
作者 Taotao Zhu Ziwen Li +14 位作者 Xueli An Yan Long Xiaofeng Xue Ke Xie Biao Ma Danfeng Zhang Yijian Guan Canfang Niu zhenying dong Quancan Hou Lina Zhao Suowei Wu Jinping Li Weiwei Jin Xiangyuan Wan 《Molecular Plant》 SCIE CAS CSCD 2020年第11期1624-1643,共20页
Genic male sterility(GMS)is critical for heterosis utilization and hybrid seed production.Although GMS mutants and genes have been studied extensively in plants,it has remained unclear whether chloroplast-associated p... Genic male sterility(GMS)is critical for heterosis utilization and hybrid seed production.Although GMS mutants and genes have been studied extensively in plants,it has remained unclear whether chloroplast-associated photosynthetic and metabolic activities are involved in the regulation of anther development.In this study,we characterized the function of ZmMs33/ZmGPAT6,which encodes a member of the glycerol-3-phosphate acyltransferase(GPAT)family that catalyzes the first step of the glycerolipid synthetic pathway.We found that normal structure and function of endothecium(En)chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are crucial for maize anther development.ZmMs33 is expressed mainly in the tapetum at early anther developmental stages and critical for cell proliferation and expansion at late stages.Chloroplasts in En cells of wild-type anthers function as starch storage sites before stage 10 but as photosynthetic factories since stage 10 to enable starch metabolism and carbohydrate supply.Loss of ZmMs33 function inhibits the biosynthesis of glycolipids and phospholipids,which are major components of En chloroplast membranes,and disrupts the development and function of En chloroplasts,resulting in the formation of abnormal En chloroplasts containing numerous starch granules.Further analyses reveal that starch synthesis during the day and starch degradation at night are greatly suppressed in the mutant anthers,leading to carbon starvation and low energy status,as evidenced by low trehalose-6-phosphate content and a reduced ATP/AMP ratio.The energy sensor and inducer of autophagy,SnRK1,was activated to induce early and excessive autophagy,premature PCD,and metabolic reprogramming in tapetal cells,finally arresting the elongation and development of mutant anthers.Taken together,our results not only show that ZmMs33 is required for normal structure and function of En chloroplasts but also reveal that starch metabolism and photosynthetic activities of En chloroplasts at different developmental stages are essential for normal anther development.These findings provide novel insights for understanding how lipid biosynthesis in the tapetum,the structure and function of En chloroplasts,and energy and substance metabolism are coordinated to maintain maize anther development. 展开更多
关键词 ZmMs33/ZmGPAT6 CHLOROPLAST SnRK1 AUTOPHAGY anther development MAIZE
原文传递
Dissecting and Enhancing the Contributions of High-Molecular-Weight Glutenin Subunits to Dough Functionality and Bread Quality 被引量:9
6
作者 Yiwen Li Xuefi An +14 位作者 Ran Yang Xiaomin Guo Guidong Yue Renchun Fan Bin Li Zhensheng Li Kunpu Zhang zhenying dong Luyan Zhang Jiankang Wang Xu Jia Hong-Qing Ling Aimin Zhang Xiangqi Zhang Daowen Wang 《Molecular Plant》 SCIE CAS CSCD 2015年第2期332-334,共3页
Dear Editor,Seed storage proteins (SSPs) are frequently important determinants of crop quality traits (Shewry and Casey, 1999). Dissecting and enhancing the genetic contributions of individual SSPs to their target... Dear Editor,Seed storage proteins (SSPs) are frequently important determinants of crop quality traits (Shewry and Casey, 1999). Dissecting and enhancing the genetic contributions of individual SSPs to their target traits are essential for effectively improving crop quality attributes. However, such a task is often difficult to accomplish, because SSPs are frequently expressed from multigene families and exhibit strong allelic variation. Consequently, detailed knowledge of the function of individual SSPs in crop quality trait is still limited. This scenario is well illustrated by high-molecular-weight glutenin subunits (HMW- GSs), a complex family of SSPs that are involved in wheat enduse quality through affecting dough functionality (Bek6s, 2012; Rasheed et al., 2014). 展开更多
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部