期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Trusted artificial intelligence for environmental assessments: An explainable high-precision model with multi-source big data
1
作者 Haoli Xu Xing Yang +13 位作者 Yihua Hu Daqing Wang zhenyu liang Hua Mu Yangyang Wang liang Shi Haoqi Gao Daoqing Song Zijian Cheng Zhao Lu Xiaoning Zhao Jun Lu Bingwen Wang Zhiyang Hu 《Environmental Science and Ecotechnology》 SCIE 2024年第6期327-338,共12页
Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box&q... Environmental assessments are critical for ensuring the sustainable development of human civilization.The integration of artificial intelligence(AI)in these assessments has shown great promise,yet the"black box"nature of AI models often undermines trust due to the lack of transparency in their decision-making processes,even when these models demonstrate high accuracy.To address this challenge,we evaluated the performance of a transformer model against other AI approaches,utilizing extensive multivariate and spatiotemporal environmental datasets encompassing both natural and anthropogenic indicators.We further explored the application of saliency maps as a novel explainability tool in multi-source AI-driven environmental assessments,enabling the identification of individual indicators'contributions to the model's predictions.We find that the transformer model outperforms others,achieving an accuracy of about 98%and an area under the receiver operating characteristic curve(AUC)of 0.891.Regionally,the environmental assessment values are predominantly classified as level II or III in the central and southwestern study areas,level IV in the northern region,and level V in the western region.Through explainability analysis,we identify that water hardness,total dissolved solids,and arsenic concentrations are the most influential indicators in the model.Our AI-driven environmental assessment model is accurate and explainable,offering actionable insights for targeted environmental management.Furthermore,this study advances the application of AI in environmental science by presenting a robust,explainable model that bridges the gap between machine learning and environmental governance,enhancing both understanding and trust in AI-assisted environmental assessments. 展开更多
关键词 Intelligent environmental assessment TRANSFORMER Multi-source data Explainable AI
原文传递
从柔到刚——配位聚合物“夜明珠”
2
作者 廖虹伊 梁振羽 +3 位作者 黄铭骏 朱自强 叶嘉文 陈玲 《大学化学》 CAS 2023年第4期35-43,共9页
开发新型有机/配合物长余辉材料,并通过研究其结构与性质的关系,来提高长余辉性能,是当前的研究热点。本实验涉及一种铜碘簇配位聚合物(CuIU),其存在立方(C,Cubic)和三方(T,Trigonal)相。虽然二者的分子式相同,但由于结构框架的结晶方... 开发新型有机/配合物长余辉材料,并通过研究其结构与性质的关系,来提高长余辉性能,是当前的研究热点。本实验涉及一种铜碘簇配位聚合物(CuIU),其存在立方(C,Cubic)和三方(T,Trigonal)相。虽然二者的分子式相同,但由于结构框架的结晶方式不同,导致较刚性的T-CuIU具有明显的长余辉性质,而柔性的C-CuIU则没有。合成过程在盐溶液中常温进行,条件温和,仅需简单的搅拌、离心、干燥等操作就能完成,适合在本科生实验中推行。其中,短时间搅拌反应得到的是C-CuIU,而长时间搅拌得到的是T-CuIU。C、T两相的转化容易控制,二者的余辉差别肉眼可观察。通过引入结构模型教具、荧光墨水、丝网印刷等可进一步提高课程的生动性与趣味性。该实验有助于学生了解金属簇配合物的合成方法,认识配合物结构与性质之间的深刻联系。同时,实验还融合了X射线粉末衍射仪、荧光仪、热重分析仪等科研仪器的操作,具有较好的科教融合效果。 展开更多
关键词 配位聚合物 长余辉 结构与性质 科教融合 防伪油墨
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部