Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fund...Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.展开更多
Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interacti...Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.展开更多
A meteorological service and meteorological information officer management business platform based on WebGIS information interaction is designed and realized.Firstly,the goals of system construction are introduced,and...A meteorological service and meteorological information officer management business platform based on WebGIS information interaction is designed and realized.Firstly,the goals of system construction are introduced,and then the features of the system is analyzed.Finally,the subsystems of the system are studied,such as geographic information subsystem,information officer management subsystem,information release subsystem,information feedback and evaluation subsystem,radar analysis subsystem,time traceback subsystem,integrated display subsystem,etc.展开更多
Two-dimensional(2D)van der Waals transition metal dichalcogenides(TMDs)are a new class of electronic materials offering tremendous opportunities for advanced technologies and fundamental studies.Similar to conventiona...Two-dimensional(2D)van der Waals transition metal dichalcogenides(TMDs)are a new class of electronic materials offering tremendous opportunities for advanced technologies and fundamental studies.Similar to conventional semiconductors,substitutional doping is key to tailoring their electronic properties and enabling their device applications.Here,we review recent progress in doping methods and understanding of doping effects in group 6 TMDs(MX2,M=Mo,W;X=S,Se,Te),which are the most widely studied model 2D semiconductor system.Experimental and theoretical studies have shown that a number of different elements can substitute either M or X atoms in these materials and act as n-or p-type dopants.This review will survey the impact of substitutional doping on the electrical and optical properties of these materials,discuss open questions,and provide an outlook for further studies.展开更多
Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, o...Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, optoelectronics-, and electrocatalysis-related applications. Herein, we describe the controlled synthesis of uniform monolayer ReSe2 flakes with variable morphology (sunflower- or truncated-triangle-shaped) on SiO2/Si substrates using different ambient-pressure chemical vapor deposition (CVD) setups. The prepared polycrystalline ReSe2 flakes were transferred intact onto Au foil electrodes and tested for activity in the hydrogen evolution reaction (HER). Interestingly, compared to the compact truncated-triangle-shaped ReSe2 flakes, their edge-abundant sunflower-shaped counterparts exhibited superior electrocatalytic HER activity, featuring a relatively low Tafel slope of - 76 mV/dec and an exchange current density of 10.5 μA/cm2. Thus, our work demonstrates that CVD-grown ReSe2 is a promising two- dimensional anisotropic material for applications in the electrocatalytic HER.展开更多
Vertical heterostructures based on two-dimensional(2D)materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices.Herein,we report the direct construct!on of a...Vertical heterostructures based on two-dimensional(2D)materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices.Herein,we report the direct construct!on of an abnormal graphene/ReSe2 stack on Au foils by a two-step chemical vapor deposition(CVD)strategy.During the second growth stage,mono layer ReSe2 is found to prefere ntially evolve at the irUerface between the first-grown graphene layer and the Au substrate.The unusual stacking behavior is unraveled by in-situ"cutting open"the upper graphene from the defects to expose the lower ReSe2 using scanning tunneling microscopy(STM).From combination of these results with density functional theory calculations,the domain boundaries and edge sites of graphene are proposed to be adsorption sites for Re and Se precursors,further facilitating the growth of ReSe2 at the van der Waals gap of graphene/Au.This work hereby offers an intriguing strategy for obtaining vertical 2D heterostructures featured with an ultra-clean interface and a designed stacking geometry.展开更多
Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach f...Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach for the high- efficiency fabrication of graphene glass. The key feature of our approach is the fabrication of a 2-4 μm wide gap above the glass substrate, with plenty of stumbling blocks; this gap was found to significantly increase the collision probability of the carbon precursors and reactive fragments between one another and with the glass surface. As a result, the growth rate of graphene glass increased remarkably, together with an improvement in the growth quality and uniformity as compared to those in the conventional gas flow CVD technique. These high-quality graphene glasses exhibited an excellent defogging performance with much higher defogging speed and higher stability compared to those previously reported. The graphene sapphire glass was found to be an ideal substrate for growing uniform and ultra-smooth aluminum nitride thin films without the tedious pre-deposition of a buffer layer. The presented confined- flow CVD approach offers a simple and low-cost route for the mass production of graphene glass, which is believed to promote the practical applications of various graphene glasses.展开更多
Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics.However,rational design of synthetic protocols to harvest wafer-scale produc...Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics.However,rational design of synthetic protocols to harvest wafer-scale production of directly grown graphene still remains a daunting challenge.Herein we explore a batch synthesis of large-area graphene with wafer-scale uniformity by virtue of direct chemical vapor deposition(CVD)on quartz.Such a controllable CVD approach allows to synthesize 30 pieces of 4-inch graphene wafers in one batch,affording a low fluctuation of optical and electrical properties.Computational fluid dynamics simulations reveal the mechanism of uniform growth,indicating thermal field and confined flow field play leading roles in attaining the batch uniformity.The resulting wafer-scale graphene enables the direct utilization as key components in optical elements.Our method is applicable to other types of insulating substrates(e.g.,sapphire,SiO2/Si,Si3N4),which may open a new avenue for direct manufacture of graphene wafers in an economic fashion.展开更多
Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. How...Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. However, the batch production of monolayer MoTe2 has been rarely reported. In this study, we demonstrate the synthesis of large-domain (edge length exceeding 30 μm), monolayer MoTe2 from chemical vapor deposition-grown monolayer MoS2 using a chalcogen atom-exchange synthesis route. An in-depth investigation of the tellurization process reveals that the substitution of S atoms by Te is prevalently initiated at the edges and grain boundaries of the monolayer MoS2, which differs from the homogeneous selenization of MoS2 flakes with the formation of alloyed Mo-S-Se hybrids. Moreover, we detect a large compressive strain (approximately -10%) in the transformed MoTe2 lattice, which possibly drives the phase transition from 2H to 1T' at the reaction temperature of 500 ℃. This phase change is substantiated by experimental facts and first-principles calculations. This work introduces a novel route for the templated synthesis of two-dimensional layered materials through atom substitutional chemistry and provides a new pathway for engineering the strain and thus the intriguing physics and chemistry.展开更多
Revealing the structural/electronic features and interfacial interactions of monolayer MoS2 and WS2 on metals is essential to evaluating the performance of related devices.In this study,we focused on the atomic-scale ...Revealing the structural/electronic features and interfacial interactions of monolayer MoS2 and WS2 on metals is essential to evaluating the performance of related devices.In this study,we focused on the atomic-scale features of monolayer WS2 on Au(001) synthesized via chemical vapor deposition.Scanning tunneling microscopy and spectroscopy reveal that the WS2/Au(001) system exhibits a striped superstructure similar to that of MoS2/Au(001) but weaker interfacial interactions,as evidenced by experimental and theoretical investigations.Specifically,the WS2/Au(001) band gap exhibits a relatively intrinsic value of ~ 2.0 eV.However,the band gap can gradually decrease to ~ 1.5 eV when the sample annealing temperature increases from ~370 to 720 ℃.In addition,the doping level (or Fermi energy) of monolayer WS2/Au(001) varies little over the valley and ridge regions of the striped patterns because of the homogenous distributions of point defects introduced by annealing.Briefly,this work provides an in-depth investigation into the interfacial interactions and electronic properties of monolayer MX2 on metal substrates.展开更多
基金the National Key Research and Development Program of China (Grant No. 2017YFA0205700)National Basic Research Program of China (Grant No. 2015CB932403, 2017YFA0206000)+3 种基金National Natural Science Foundation of China (Grant Nos. 11674012, 61521004, 21790364, 61422501, and 11374023)Beijing Natural Science Foundation (Z180011, and L140007)Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201420)National Program for Support of Top-notch Young Professionals (Grant No. W02070003).
文摘Manipulation of light-matter interaction is critical in modern physics, especially in the strong coupling regime, where the generated half-light, half-matter bosonic quasiparticles as polaritons are important for fundamental quantum science and applications of optoelectronics and nonlinear optics. Two-dimensional transition metal dichalcogenides (TMDs) are ideal platforms to investigate the strong coupling because of their huge exciton binding energy and large absorption coefficients. Further studies on strong exciton-plasmon coupling by combining TMDs with metallic nanostructures have generated broad interests in recent years. However, because of the huge plasmon radiative damping, the observation of strong coupling is significantly limited at room temperature. Here, we demonstrate that a large Rabi splitting (~300 meV) can be achieved at ambient conditions in the strong coupling regime by embedding Ag-WS2 heterostructure in an optical microcavity. The generated quasiparticle with part-plasmon, part-exciton and part-light is analyzed with Hopfield coefficients that are calculated by using three-coupled oscillator model. The resulted plasmon-exciton polaritonic hybrid states can efficiently enlarge the obtained Rabi splitting, which paves the way for the practical applications of polaritonic devices based on ultrathin materials.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2013CBA01603,2016YFA0300600,and 2016YFA0300903)the National Natural Science Foundation of China(Grant Nos.11574005,11774009,11222436,and 11574283)the National Postdoctoral Program for Innovative Talents of China(Grant No.BX201700012)funded by China Postdoctoral Science Foundation.
文摘Being parent materials of two-dimensional (2D) crystals, van der Waals layered materials have received revived interest. In most 2D materials, the interaction between electrons is negligible. Introducing the interaction can give rise to a variety of exotic properties. Here, via intercalating a van der Waals layered compound VS2, we find evidence for electron correlation by extensive magnetic, thermal, electrical, and thermoelectric characterizations. The low temperature Sommerfeld coefficient is 64 mJ·K-2·mol-1 and the Kadowaki-Woods ratio rKW^0.20a0. Both supports an enhancement of the electron correlation. The temperature dependences of the resistivity and thermopower indicate an important role played by the Kondo effect. The Kondo temperature TK is estimated to be around 8 K. Our results suggest intercalation as a potential means to engineer the electron correlation in van der Waals materials, as well as 2D materials.
基金Supported by Scientific Research Project of Public Welfare Industry(Meteorology)in 2012(GYHY201206004)Project for Key Technology Integration and Application of China Meteorological Administration(CMAGJ2013M74)+3 种基金Open Subject in 2012 of the State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences(2012LASW-B01)Research Foundation in 2012 of Nanjing Radar Meteorology and Severe Weather Open Laboratory(BJG201205)Special Project for Forecasters of China Meteorological Administration(CMAYBY2015-039)Special Project for Forecasters of Jiangxi Meteorological Bureau"Comparative Analysis of Mesoscale Characteristics during Two Typhoon Rainstorm Processes".
文摘A meteorological service and meteorological information officer management business platform based on WebGIS information interaction is designed and realized.Firstly,the goals of system construction are introduced,and then the features of the system is analyzed.Finally,the subsystems of the system are studied,such as geographic information subsystem,information officer management subsystem,information release subsystem,information feedback and evaluation subsystem,radar analysis subsystem,time traceback subsystem,integrated display subsystem,etc.
基金the Ministry of Education(MOE),Singapore,under AcRF Tier 3(MOE2018-T3-1-005)the Singapore National Research Foundation for funding the research under medium-sized centre programme.M.B.acknowledges support from MOE’s AcRF Tier 1(R-284-000-179-133).
文摘Two-dimensional(2D)van der Waals transition metal dichalcogenides(TMDs)are a new class of electronic materials offering tremendous opportunities for advanced technologies and fundamental studies.Similar to conventional semiconductors,substitutional doping is key to tailoring their electronic properties and enabling their device applications.Here,we review recent progress in doping methods and understanding of doping effects in group 6 TMDs(MX2,M=Mo,W;X=S,Se,Te),which are the most widely studied model 2D semiconductor system.Experimental and theoretical studies have shown that a number of different elements can substitute either M or X atoms in these materials and act as n-or p-type dopants.This review will survey the impact of substitutional doping on the electrical and optical properties of these materials,discuss open questions,and provide an outlook for further studies.
基金The work was supported by the National Natural Science Foundation of China (Nos. 51290272, 51472008, 21573004, 51522212, 51421002, 51672154, 51372130, and 51672307), the National Key Technologies Research and Development Program of China (No. 2016YFA0200103), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201601), the National Program on Key Basic Research Project (No. 2014CB921002), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200), the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC035), and the MoST (2016YFA0200200).
文摘Controlled synthesis of structurally anisotropic rhenium diselenide (ReSe2) with macroscopically uniform and strictly monolayer thickness as well as tunable domain shape/size is of great interest for electronics-, optoelectronics-, and electrocatalysis-related applications. Herein, we describe the controlled synthesis of uniform monolayer ReSe2 flakes with variable morphology (sunflower- or truncated-triangle-shaped) on SiO2/Si substrates using different ambient-pressure chemical vapor deposition (CVD) setups. The prepared polycrystalline ReSe2 flakes were transferred intact onto Au foil electrodes and tested for activity in the hydrogen evolution reaction (HER). Interestingly, compared to the compact truncated-triangle-shaped ReSe2 flakes, their edge-abundant sunflower-shaped counterparts exhibited superior electrocatalytic HER activity, featuring a relatively low Tafel slope of - 76 mV/dec and an exchange current density of 10.5 μA/cm2. Thus, our work demonstrates that CVD-grown ReSe2 is a promising two- dimensional anisotropic material for applications in the electrocatalytic HER.
基金the National Natural Science Foundation of China(Nos.51472008,51861135201,51290272,61774003,51502007,and 51672007)the National Key Research and Development Program of China(Nos.2016YFA0200103,2017YFA0205700,and 2017YFA0304600)+1 种基金the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics(Nos.KF201601 and KF201604)"2011 Program”Peking-Tsinghua-IOP Collaborative Innovation Center of Quantum Matter.
文摘Vertical heterostructures based on two-dimensional(2D)materials have attracted widespread interest for their numerous applications in electronic and optoelectronic devices.Herein,we report the direct construct!on of an abnormal graphene/ReSe2 stack on Au foils by a two-step chemical vapor deposition(CVD)strategy.During the second growth stage,mono layer ReSe2 is found to prefere ntially evolve at the irUerface between the first-grown graphene layer and the Au substrate.The unusual stacking behavior is unraveled by in-situ"cutting open"the upper graphene from the defects to expose the lower ReSe2 using scanning tunneling microscopy(STM).From combination of these results with density functional theory calculations,the domain boundaries and edge sites of graphene are proposed to be adsorption sites for Re and Se precursors,further facilitating the growth of ReSe2 at the van der Waals gap of graphene/Au.This work hereby offers an intriguing strategy for obtaining vertical 2D heterostructures featured with an ultra-clean interface and a designed stacking geometry.
基金This work was financially supported by the National Basic Research Program of China (Nos. 2016YFA0200103, 2013CB932603, 2012CB933404, and 2013CB934600), the National Natural Science Foundation of China (Nos. 51520105003 and 51432002), the Ministry of Education (No. 20120001130010), and the Beijing Municipal Science and Technology Planning Project (No. Z151100003315013).
文摘Fast and uniform growth of high-quality graphene on conventional glass is of great importance for practical applications of graphene glass. We report herein a confined-flow chemical vapor deposition (CVD) approach for the high- efficiency fabrication of graphene glass. The key feature of our approach is the fabrication of a 2-4 μm wide gap above the glass substrate, with plenty of stumbling blocks; this gap was found to significantly increase the collision probability of the carbon precursors and reactive fragments between one another and with the glass surface. As a result, the growth rate of graphene glass increased remarkably, together with an improvement in the growth quality and uniformity as compared to those in the conventional gas flow CVD technique. These high-quality graphene glasses exhibited an excellent defogging performance with much higher defogging speed and higher stability compared to those previously reported. The graphene sapphire glass was found to be an ideal substrate for growing uniform and ultra-smooth aluminum nitride thin films without the tedious pre-deposition of a buffer layer. The presented confined- flow CVD approach offers a simple and low-cost route for the mass production of graphene glass, which is believed to promote the practical applications of various graphene glasses.
基金This work was financially supported by the National Basic Research Program of China(No.2016YFA0200103)the National Natural Science Foundation of China(Nos.61527814,51702225,51432002,61474109,51290272,51502007,11474274,and 51672007)+2 种基金the National Equipment Program of China(No.ZDYZ2015-1)Beijing Municipal Science and Technology Planning Project(Nos.Z181100004818002 and Z191100000819004)Beijing Natural Science Foundation(No.4182063).
文摘Scalable synthesis of transfer-free graphene over insulators offers exciting opportunity for next-generation electronics and optoelectronics.However,rational design of synthetic protocols to harvest wafer-scale production of directly grown graphene still remains a daunting challenge.Herein we explore a batch synthesis of large-area graphene with wafer-scale uniformity by virtue of direct chemical vapor deposition(CVD)on quartz.Such a controllable CVD approach allows to synthesize 30 pieces of 4-inch graphene wafers in one batch,affording a low fluctuation of optical and electrical properties.Computational fluid dynamics simulations reveal the mechanism of uniform growth,indicating thermal field and confined flow field play leading roles in attaining the batch uniformity.The resulting wafer-scale graphene enables the direct utilization as key components in optical elements.Our method is applicable to other types of insulating substrates(e.g.,sapphire,SiO2/Si,Si3N4),which may open a new avenue for direct manufacture of graphene wafers in an economic fashion.
基金We acknowledge finandal support by National Natural Science Foundation of China (Nos. 51472008, 51290272, 51471004, and 51672307), the National High-tech R&D Program of China (No. 2016YFA0200103), the National Basic Research Program of China (No. 2014CB921002), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics (No. KF201601), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB07030200) and the Key Research Program of Frontier Sciences, CAS (No. QYZDB-SSW-JSC035).
文摘Molybdenum ditelluride (MoTe2), which is an important transition-metal dichalcogenide, has attracted considerable interest owing to its unique properties, such as its small bandgap and large Seebeck coefficient. However, the batch production of monolayer MoTe2 has been rarely reported. In this study, we demonstrate the synthesis of large-domain (edge length exceeding 30 μm), monolayer MoTe2 from chemical vapor deposition-grown monolayer MoS2 using a chalcogen atom-exchange synthesis route. An in-depth investigation of the tellurization process reveals that the substitution of S atoms by Te is prevalently initiated at the edges and grain boundaries of the monolayer MoS2, which differs from the homogeneous selenization of MoS2 flakes with the formation of alloyed Mo-S-Se hybrids. Moreover, we detect a large compressive strain (approximately -10%) in the transformed MoTe2 lattice, which possibly drives the phase transition from 2H to 1T' at the reaction temperature of 500 ℃. This phase change is substantiated by experimental facts and first-principles calculations. This work introduces a novel route for the templated synthesis of two-dimensional layered materials through atom substitutional chemistry and provides a new pathway for engineering the strain and thus the intriguing physics and chemistry.
基金We acknowledge financial support by the National Natural Science Foundation of China (Nos. 51472008 and 51290272), the National Key Research and Development Program of China (No. 2016YFA0200103),the Beijing Municipal Science and Technology Planning Project (No. Z151100003315013), the Open Research Fund Program of the State Key Laboratory of Low- Dimensional Quantum Physics (No. KF201601) and the ENN Energy Research Institute.
文摘Revealing the structural/electronic features and interfacial interactions of monolayer MoS2 and WS2 on metals is essential to evaluating the performance of related devices.In this study,we focused on the atomic-scale features of monolayer WS2 on Au(001) synthesized via chemical vapor deposition.Scanning tunneling microscopy and spectroscopy reveal that the WS2/Au(001) system exhibits a striped superstructure similar to that of MoS2/Au(001) but weaker interfacial interactions,as evidenced by experimental and theoretical investigations.Specifically,the WS2/Au(001) band gap exhibits a relatively intrinsic value of ~ 2.0 eV.However,the band gap can gradually decrease to ~ 1.5 eV when the sample annealing temperature increases from ~370 to 720 ℃.In addition,the doping level (or Fermi energy) of monolayer WS2/Au(001) varies little over the valley and ridge regions of the striped patterns because of the homogenous distributions of point defects introduced by annealing.Briefly,this work provides an in-depth investigation into the interfacial interactions and electronic properties of monolayer MX2 on metal substrates.