The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga...The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.展开更多
Rare earth(RE) elements have positive e ects on Al alloy, while most research is focused on microstructure and mechanical properties. As important application indices, toughness and plasticity are properties that are ...Rare earth(RE) elements have positive e ects on Al alloy, while most research is focused on microstructure and mechanical properties. As important application indices, toughness and plasticity are properties that are sensitive to alloy fracture characteristics, and few research studies have characterized the fracture properties of Al–Cu–Mn alloy on RE elements. The e ect of di erent contents of Y on the fracture properties of Al–Cu–Mn alloy is investigated. T6 heat treatment(solid solution and artificial aging treatment), optical microscope(OM), scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) methods are applied to the alloy. Results showed that when Y ele?ment is present at 0.1%, the section of the as?cast alloy has smaller sized dimples and the fracture mode presents duc?tile features. Slight changes in hardness are also observed and maintained at about 60 HV. With increasing content of the RE element Y from 0.1 to 0.5%, the θ phase and Cu atoms in the matrix were reduced and most stopped at Grain boundaries(GBs). Micro?segregation and an enriched zone of Y near the GBs gradually increased. At the same time, the inter?metallic compound AlCuY is aggregated at grain junctions causing deterioration of the micro?structure and fracture properties of the alloy. After T6 treatment, the flatness of the fracture surface was lower than that of all the as?cast alloy showing lots of dimples and teared edges with a significant increase in hardness. When Y content was 0.1%, the strength and hardness of the alloy increased due to refinement of the grain strengthening e ect. The content of Y elements segregated in the inter?dendritic zone and GBs is reduced. Plasticity and deformation compatibility also improved, making cracks di cult to form and merge with each other along adjacent grain junctions and providing an increased potential for ductile fracture. This paper proposes the addition of RE Y as an e ective and prospective strategy to improve the fracture properties of the Al–Cu–Mn alloy and provide a meaningful reference in terms of improving overall performance.展开更多
The hot workability and dynamic recrystallization(DRX)mechanisms of pure nickel N6 were systematically investigated using hot compression tests.Based on hot compression data,the constitutive equation of N6 was develop...The hot workability and dynamic recrystallization(DRX)mechanisms of pure nickel N6 were systematically investigated using hot compression tests.Based on hot compression data,the constitutive equation of N6 was developed and its reliability was verified.Its hot processing map was constructed,and combined with microstructural observations,a semi-quantitative response relationship between hot deformation parameters and microstructure was established.The DRX process of N6 is a thermally activated process and particularly sensitive to the strain rate.The optimal hot processing parameters for N6 were determined to be 950−1050℃ and 0.1−1 s^(−1).Furthermore,it was proven that the dominant nucleation mechanism is discontinuous DRX characterized by grain boundary bulging and twins assisting nucleation,while the continuous DRX characterized by subgrains combined with rotation is an inactive nucleation mechanism.展开更多
基金funded by Ningbo Key R&D Plan and“Unveiling and Leading”(Grant No.2023Z093)Ningbo Science and Technology Innovation 2025 Major Special Project(Grant No.2022Z106)Hezhou City Central Leading Local Science and Technology Development Special Fund Project(Grant No.HK ZY2022002).
文摘The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
基金the Science Foundation for Distinguished Young Scholars of Gansu Province,China(No.18JR3RA134)the Lanzhou University of Technology Support Plan for Excellent Young Scholars,China(No.CGZH001)+1 种基金the National Nature Science Foundation of China(No.51665032)the Key R&D Program of Gansu Province−International Cooperation Project,China(No.20YF8WA064).
基金Gansu Provincial Science and Technology Major Special Program Foundation of China(Grant No.1302GKDA015)State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals Open Foundation of Lanzhou University of Technology of China(Grant No.SKL1303)
文摘Rare earth(RE) elements have positive e ects on Al alloy, while most research is focused on microstructure and mechanical properties. As important application indices, toughness and plasticity are properties that are sensitive to alloy fracture characteristics, and few research studies have characterized the fracture properties of Al–Cu–Mn alloy on RE elements. The e ect of di erent contents of Y on the fracture properties of Al–Cu–Mn alloy is investigated. T6 heat treatment(solid solution and artificial aging treatment), optical microscope(OM), scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) methods are applied to the alloy. Results showed that when Y ele?ment is present at 0.1%, the section of the as?cast alloy has smaller sized dimples and the fracture mode presents duc?tile features. Slight changes in hardness are also observed and maintained at about 60 HV. With increasing content of the RE element Y from 0.1 to 0.5%, the θ phase and Cu atoms in the matrix were reduced and most stopped at Grain boundaries(GBs). Micro?segregation and an enriched zone of Y near the GBs gradually increased. At the same time, the inter?metallic compound AlCuY is aggregated at grain junctions causing deterioration of the micro?structure and fracture properties of the alloy. After T6 treatment, the flatness of the fracture surface was lower than that of all the as?cast alloy showing lots of dimples and teared edges with a significant increase in hardness. When Y content was 0.1%, the strength and hardness of the alloy increased due to refinement of the grain strengthening e ect. The content of Y elements segregated in the inter?dendritic zone and GBs is reduced. Plasticity and deformation compatibility also improved, making cracks di cult to form and merge with each other along adjacent grain junctions and providing an increased potential for ductile fracture. This paper proposes the addition of RE Y as an e ective and prospective strategy to improve the fracture properties of the Al–Cu–Mn alloy and provide a meaningful reference in terms of improving overall performance.
基金supported by the Science Foundation for Distinguished Young Scholars of Gansu Province,China(No.18JR3RA134)Lanzhou University of Technology Support Plan for Excellent Young Scholars,China(No.CGZH001)the National Nature Science Foundation of China(No.51665032).
文摘The hot workability and dynamic recrystallization(DRX)mechanisms of pure nickel N6 were systematically investigated using hot compression tests.Based on hot compression data,the constitutive equation of N6 was developed and its reliability was verified.Its hot processing map was constructed,and combined with microstructural observations,a semi-quantitative response relationship between hot deformation parameters and microstructure was established.The DRX process of N6 is a thermally activated process and particularly sensitive to the strain rate.The optimal hot processing parameters for N6 were determined to be 950−1050℃ and 0.1−1 s^(−1).Furthermore,it was proven that the dominant nucleation mechanism is discontinuous DRX characterized by grain boundary bulging and twins assisting nucleation,while the continuous DRX characterized by subgrains combined with rotation is an inactive nucleation mechanism.