We investigate the relations between Pesin–Pitskel topological pressure on an arbitrary subset and measure-theoretic pressure of Borel probability measures for finitely generated semigroup actions.Let(X,G)be a system...We investigate the relations between Pesin–Pitskel topological pressure on an arbitrary subset and measure-theoretic pressure of Borel probability measures for finitely generated semigroup actions.Let(X,G)be a system,where X is a compact metric space and G is a finite family of continuous maps on X.Given a continuous function f on X,we define Pesin–Pitskel topological pressure PG(Z,f)for any subset Z■X and measure-theoretical pressure Pμ,G(X,f)for anyμ∈M(X),where M(X)denotes the set of all Borel probability measures on X.For any non-empty compact subset Z of X,we show that PG(Z,f)=sup{Pμ,G(X,f):μ∈M(X),μ(Z)=1}.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.11771459,11701584 and 11871228)Guangdong Basic and Applied Basic Research Foundation(Grant No.2019A1515110932)the Natural Science Research Project of Guangdong Province(Grant No.2018KTSCX122)。
文摘We investigate the relations between Pesin–Pitskel topological pressure on an arbitrary subset and measure-theoretic pressure of Borel probability measures for finitely generated semigroup actions.Let(X,G)be a system,where X is a compact metric space and G is a finite family of continuous maps on X.Given a continuous function f on X,we define Pesin–Pitskel topological pressure PG(Z,f)for any subset Z■X and measure-theoretical pressure Pμ,G(X,f)for anyμ∈M(X),where M(X)denotes the set of all Borel probability measures on X.For any non-empty compact subset Z of X,we show that PG(Z,f)=sup{Pμ,G(X,f):μ∈M(X),μ(Z)=1}.