A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that ...A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that the optimal catalyst Fe_(0.5)Co/NOMC exhibits superior activity with ahalf‐wave potential of 0.89 V(vs.reversible hydrogen electrode)for the oxygen reduction reactionand an overpotential of 0.31 V at 10 mA cm^(−2)for the oxygen evolution reaction.For demonstration,the catalyst was used in the assembly of a rechargeable zinc‐air battery,which exhibited an exceptionallyhigh energy density of 820 Wh kg−1 at 100 mA cm^(−2),a high power density of 153 mW cm^(−2)at1.0 V,and superior cycling stability up to 432 cycles(144 h)under ambient air.展开更多
文摘A robust oxygen‐related electrocatalyst,composed of spinel iron‐cobalt oxide and nitrogen‐dopedordered mesoporous carbon(NOMC),was developed for rechargeable metal‐air batteries.Electrochemicaltests revealed that the optimal catalyst Fe_(0.5)Co/NOMC exhibits superior activity with ahalf‐wave potential of 0.89 V(vs.reversible hydrogen electrode)for the oxygen reduction reactionand an overpotential of 0.31 V at 10 mA cm^(−2)for the oxygen evolution reaction.For demonstration,the catalyst was used in the assembly of a rechargeable zinc‐air battery,which exhibited an exceptionallyhigh energy density of 820 Wh kg−1 at 100 mA cm^(−2),a high power density of 153 mW cm^(−2)at1.0 V,and superior cycling stability up to 432 cycles(144 h)under ambient air.