The design and synthesis of self-suspending photocatalyst device with easy recyclability is important for practical application.Here,this work utilizes aluminum-plastic package waste as raw material to prepare an alum...The design and synthesis of self-suspending photocatalyst device with easy recyclability is important for practical application.Here,this work utilizes aluminum-plastic package waste as raw material to prepare an aluminum-plastic supported TiO_(2)(AP-TiO_(2))photocatalyst device through 3D printing design and surface deposition method.A series of characterizations were carried out to explore the structure,morphology and performance of the AP-TiO_(2)device.Under UV light illumination,the AP-TiO_(2)-50 efficiently degrade 93.6%tetracycline hydrochloride(THC)after 4 hr,which increases by 8.3%compared with that of TiO_(2)powder suspension system with the same catalyst amount.Based on it,AP-ZnO,AP-CdS,AP-g-C_3N_4and AP-Pt-TiO_(2)are also fabricated,and applied in photocatalytic degradation and hydrogen evolution,which all exhibit higher photoactivities than powder suspension systems.This work provides a new avenue for the fabrication of advanced recyclable photocatalyst device.Moreover,the work offers a novel sight for the high-value utilization of aluminum-plastic package waste,which has positive implications for environmental protection.展开更多
基金financially supported by the National Natural Science Foundation of China (No.21905049)the National Key Research and Development Program of China (Nos.2019YFC1908203 and 1904500)+1 种基金the Natural ScienceFoundation of Fujian Province (Nos.2022J01650 and 2020J01201)the Research Foundation of the Academy of Carbon Neutrality of Fujian Normal University (No.TZH202207)。
文摘The design and synthesis of self-suspending photocatalyst device with easy recyclability is important for practical application.Here,this work utilizes aluminum-plastic package waste as raw material to prepare an aluminum-plastic supported TiO_(2)(AP-TiO_(2))photocatalyst device through 3D printing design and surface deposition method.A series of characterizations were carried out to explore the structure,morphology and performance of the AP-TiO_(2)device.Under UV light illumination,the AP-TiO_(2)-50 efficiently degrade 93.6%tetracycline hydrochloride(THC)after 4 hr,which increases by 8.3%compared with that of TiO_(2)powder suspension system with the same catalyst amount.Based on it,AP-ZnO,AP-CdS,AP-g-C_3N_4and AP-Pt-TiO_(2)are also fabricated,and applied in photocatalytic degradation and hydrogen evolution,which all exhibit higher photoactivities than powder suspension systems.This work provides a new avenue for the fabrication of advanced recyclable photocatalyst device.Moreover,the work offers a novel sight for the high-value utilization of aluminum-plastic package waste,which has positive implications for environmental protection.