期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Astrocytes: a double-edged sword in neurodegenerative diseases 被引量:6
1
作者 zhi-bin ding Li-Juan Song +3 位作者 Qing Wang Gajendra Kumar Yu-Qing Yan Cun-Gen Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第9期1702-1710,共9页
Astrocytes play multifaceted and vital roles in maintaining neurophysiological function of the central nervous system by regulating homeostasis, increasing synaptic plasticity, and sustaining neuroprotective effects. ... Astrocytes play multifaceted and vital roles in maintaining neurophysiological function of the central nervous system by regulating homeostasis, increasing synaptic plasticity, and sustaining neuroprotective effects. Astrocytes become activated as a result of inflammatory responses during the progression of pathological changes associated with neurodegenerative disorders. Reactive astrocytes(neurotoxic A1 and neuroprotective A2) are triggered during disease progression and pathogenesis due to neuroinflammation and ischemia. However, only a limited body of literature describes morphological and functional changes of astrocytes during the progression of neurodegenerative diseases. The present review investigated the detrimental and beneficial roles of astrocytes in neurodegenerative diseases reported in recent studies, as these cells have promising therapeutic potential and offer new approaches for treatment of neurodegenerative diseases. 展开更多
关键词 A1 A2 ASTROCYTES neurodegenerative diseases NEUROINFLAMMATION NEURON NEUROPROTECTION NEUROTOXICITY polarization REACTIVITY
下载PDF
Advantages of Rho-associated kinases and their inhibitor fasudil for the treatment of neurodegenerative diseases 被引量:3
2
作者 Qing Wang Li-Juan Song +4 位作者 zhi-bin ding Zhi Chai Jie-Zhong Yu Bao-Guo Xiao Cun-Gen Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第12期2623-2631,共9页
Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in ... Ras homolog(Rho)-associated kinases(ROCKs)belong to the serine-threonine kinase family,which plays a pivotal role in regulating the damage,survival,axon guidance,and regeneration of neurons.ROCKs are also involved in the biological effects of immune cells and glial cells,as well as the development of neurodegenerative disorders such as Alzheimer’s disease,Parkinson’s disease,and multiple sclerosis.Previous studies by us and others confirmed that ROCKs inhibitors attenuated the symptoms and progression of experimental models of the abovementioned neurodegenerative diseases by inhibiting neuroinflammation,regulating immune imbalance,repairing the blood-brain barrier,and promoting nerve repair and myelin regeneration.Fasudil,the first ROCKs inhibitor to be used clinically,has a good therapeutic effect on neurodegenerative diseases.Fasudil increases the activity of neural stem cells and mesenchymal stem cells,thus optimizing cell therapy.This review will systematically describe,for the first time,the effects of abnormal activation of ROCKs on T cells,B cells,microglia,astrocytes,oligodendrocytes,and pericytes in neurodegenerative diseases of the central nervous system,summarize the therapeutic potential of fasudil in several experimental models of neurodegenerative diseases,and clarify the possible cellular and molecular mechanisms of ROCKs inhibition.This review also proposes that fasudil is a novel potential treatment,especially in combination with cell-based therapy.Findings from this review add support for further investigation of ROCKs and its inhibitor fasudil for the treatment of neurodegenerative diseases. 展开更多
关键词 Alzheimer’s disease cell-based therapy central nervous system cells FASUDIL IMMUNOCYTES multiple sclerosis Parkinson’s disease PERICYTES Rho kinase inhibitor Rho-associated kinases
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部