The detection of single amino-acid variants (SAVs) usually depends on single-nucleotide polymorphisms (SNPs) database. Here, we describe a novel method that discovers SAVs at proteome level independent of SNPs dat...The detection of single amino-acid variants (SAVs) usually depends on single-nucleotide polymorphisms (SNPs) database. Here, we describe a novel method that discovers SAVs at proteome level independent of SNPs data. Using mass spectrometry-based de novo sequencing algorithm, peptide-candidates are identified and compared with theoretical protein database to generate SAVs under pairing strategy, which is followed by database re-searching to control false discovery rate. in human brain tissues, we can confidently identify known and novel protein variants with diverse origins. Combined with DNA/RNA sequencing, we verify SAVs derived from DNA mutations, RNA alternative splicing, and unknown post-transcriptional mechanisms. Furthermore, quantitative analysis in human brain tissues reveals several tissue-specific differential expressions of SAVs. This approach provides a novel access to high-throughput detection of protein variants, which may offer the potential for clinical biomarker discovery and mechanistic research.展开更多
Single-nucleotide polymorphisms(SNPs)are recognized as one kind of major genetic variants in population scale.However,polymorphisms at the proteome level in population scale remain elusive.In the present study,we nam...Single-nucleotide polymorphisms(SNPs)are recognized as one kind of major genetic variants in population scale.However,polymorphisms at the proteome level in population scale remain elusive.In the present study,we named amino acid variances derived from SNPs within coding regions as single amino acid polymorphisms(SAPs)at the proteome level,and developed a pipeline of nontargeted and targeted proteomics to identify and quantify SAP peptides in human plasma.The absolute concentrations of three selected SAP-peptide pairs among 290 Asian individuals were measured by selected reaction monitoring(SRM)approach,and their associations with both obesity and diabetes were further analyzed.This work revealed that heterozygotes and homozygotes with various SAPs in a population could have different associations with particular traits.In addition,the SRM approach allows us for the first time to separately measure the absolute concentration of each SAP peptide in the heterozygotes,which also shows different associations with particular traits.展开更多
文摘The detection of single amino-acid variants (SAVs) usually depends on single-nucleotide polymorphisms (SNPs) database. Here, we describe a novel method that discovers SAVs at proteome level independent of SNPs data. Using mass spectrometry-based de novo sequencing algorithm, peptide-candidates are identified and compared with theoretical protein database to generate SAVs under pairing strategy, which is followed by database re-searching to control false discovery rate. in human brain tissues, we can confidently identify known and novel protein variants with diverse origins. Combined with DNA/RNA sequencing, we verify SAVs derived from DNA mutations, RNA alternative splicing, and unknown post-transcriptional mechanisms. Furthermore, quantitative analysis in human brain tissues reveals several tissue-specific differential expressions of SAVs. This approach provides a novel access to high-throughput detection of protein variants, which may offer the potential for clinical biomarker discovery and mechanistic research.
基金supported by the grants from the Ministry of Science and Technology(2011CB910200,2011CB910601)a grant from the National Natural Science Foundation of China(30821065)the grants from the Knowledge Innovation Program of the Chinese Academy of Sciences(KSCX1-YW-02,KJCX2-YW-M15).
文摘Single-nucleotide polymorphisms(SNPs)are recognized as one kind of major genetic variants in population scale.However,polymorphisms at the proteome level in population scale remain elusive.In the present study,we named amino acid variances derived from SNPs within coding regions as single amino acid polymorphisms(SAPs)at the proteome level,and developed a pipeline of nontargeted and targeted proteomics to identify and quantify SAP peptides in human plasma.The absolute concentrations of three selected SAP-peptide pairs among 290 Asian individuals were measured by selected reaction monitoring(SRM)approach,and their associations with both obesity and diabetes were further analyzed.This work revealed that heterozygotes and homozygotes with various SAPs in a population could have different associations with particular traits.In addition,the SRM approach allows us for the first time to separately measure the absolute concentration of each SAP peptide in the heterozygotes,which also shows different associations with particular traits.