The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which o...The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which only little is known up to now. This is different from some mature algorithms, that are clearly limited only to medium-sized matrix for calculating full spectrum. It is hoped that a combination of this paper with the earlier works, to be seen soon, may provide some effective algorithms for computing the spectrum in practice, especially for matrix mechanics.展开更多
基金This work was supported in part by the National Natural Science Foundation of China(Grant Nos.12090011,11771046,11771188,11771189)the National Key R&D Program of China(No.2020YFA0712900)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20171162)the project from the Ministry of Education in China,and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘The top eigenpairs at the title mean the maximal, the submaximal, or a few of the subsequent eigenpairs of an Hermitizable matrix. Restricting on top ones is to handle with the matrices having large scale, for which only little is known up to now. This is different from some mature algorithms, that are clearly limited only to medium-sized matrix for calculating full spectrum. It is hoped that a combination of this paper with the earlier works, to be seen soon, may provide some effective algorithms for computing the spectrum in practice, especially for matrix mechanics.