Oxygen evolution reaction(OER)is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique.Ir/Rubased per...Oxygen evolution reaction(OER)is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique.Ir/Rubased perovskite oxides hold great significance for application as OER electrocatalysts,due to that their multimetal-oxide forms can reduce the use of noble metals,and their compositional tunability can modulate the electronic structure and optimize OER performance.However,high operating potentials and corrosive environments pose a serious challenge to the development of durable Ir-based and Ru-based perovskite electrocatalysts.Tremendous efforts have been dedicated to improving the Ir/Ru-based perovskite activity to enhance the efficiency;however,progress in improving the durability of Ir/Ru-based perovskite electrocatalysts has been rather limited.In this review,the recent research progress of Ir/Ru-based perovskites is reviewed from the perspective of heteroatom doping,structural modulation,and formation of heterostructures.The dissolution mechanism studies of Ir/Ru and experimental attempts to improve the durability of Ir/Ru-based perovskite electrocatalysts are discussed.Challenges and outlooks for further developing Ru-and Irbased perovskite oxygen electrocatalysts are also presented.展开更多
基金financially supported by the Key Research and Development Program of Hainan Province(No.ZDYF2022GXJS006)the National Natural Science Foundation of China(Nos.52231008,52201009 and 52001227)+2 种基金Hainan Provincial Natural Science Foundation of China(No.223RC401)the Education Department of Hainan Province(No.Hnky2023ZD-2)the Starting Research Funds of the Hainan University of China(Nos.KYQD(ZR)-21105 and XJ2300002951)。
文摘Oxygen evolution reaction(OER)is a kinetically harsh four-electron anode reaction that requires a large overpotential to provide current and is of great importance in renewable electrochemical technique.Ir/Rubased perovskite oxides hold great significance for application as OER electrocatalysts,due to that their multimetal-oxide forms can reduce the use of noble metals,and their compositional tunability can modulate the electronic structure and optimize OER performance.However,high operating potentials and corrosive environments pose a serious challenge to the development of durable Ir-based and Ru-based perovskite electrocatalysts.Tremendous efforts have been dedicated to improving the Ir/Ru-based perovskite activity to enhance the efficiency;however,progress in improving the durability of Ir/Ru-based perovskite electrocatalysts has been rather limited.In this review,the recent research progress of Ir/Ru-based perovskites is reviewed from the perspective of heteroatom doping,structural modulation,and formation of heterostructures.The dissolution mechanism studies of Ir/Ru and experimental attempts to improve the durability of Ir/Ru-based perovskite electrocatalysts are discussed.Challenges and outlooks for further developing Ru-and Irbased perovskite oxygen electrocatalysts are also presented.