We modified Zr/Ce-UiO-66-NH_(2) using dual bimetallization and amination strategies to efficiently extract uranium from water resources.XRD,FTIR,and XPS indicated the successful alteration of material amination.Moreov...We modified Zr/Ce-UiO-66-NH_(2) using dual bimetallization and amination strategies to efficiently extract uranium from water resources.XRD,FTIR,and XPS indicated the successful alteration of material amination.Moreover,the metal Zr was partially replaced by Ce in Zr-oxygen atom clusters in Zr/Ce-UiO-66-NH_(2).It possessed commendable structural stability in acidic and alkaline solutions.Irrespective of whether it was submerged in a 6 M strong acid or in a 0.5M strong base solution,the structural integrity of Zr/Ce-UiO-66-NH_(2) remained unaffected.Batch experiments at pH=6.0 revealed that uranium adsorption by Zr/Ce-UiO-66-NH_(2) reached 376.8 mg g^(−1) and 611.33 mg g^(−1) at 298 K and 328 K,respectively.These values are much better than those obtained using bimetallic-modified Zr/Ce-UiO-66 or amine-functionalized UiO-66-NH_(2).After five consecutive sorption and desorption cycles,the material retained a uranium removal rate of more than 80%,proving its excellent regenerative properties.Kinetic modeling of U(VI)adsorption on Zr/Ce-UiO-66-NH_(2) implied that chemisorption dominated the rapid uranium sorption rate.We propose potential adsorption mechanisms involving three interactions:inner-sphere surface complexation,chemisorption,and electrostatic interactions.This study shows that the dual strategies of bimetallization and amination can effectively enhance U(VI)extraction from water.This approach has potential applications for the structural design of uranium adsorbents.展开更多
Corrugated cold roll bonding(CCRB) produces metal composite plate with improved mechanical properties compared with conventional methods,but the interfacial mechanism is not fully understood.Here,Cu/Al composite plate...Corrugated cold roll bonding(CCRB) produces metal composite plate with improved mechanical properties compared with conventional methods,but the interfacial mechanism is not fully understood.Here,Cu/Al composite plate with good plate shape was produced by CCRB,and the bonding mechanism and strength along the corrugated interface were studied by experiments and finite element simulations.The results showed that the average bonding strength of Cu/Al composite plate produced by CCRB was nearly twice that of conventional composite plate at an average reduction of 40% during rolling.Strong friction shear stresses occurred at the interface of the corrugated composite plate,which promoted the plastic deformation of the metals and accelerated the rupture of the brittle interfacial layer.Electron backscattered diffraction analysis showed that higher degrees of grain elongation and refinement occurred in the matrices at the front waist and trough due to the stronger normal and shear stresses.Energy-dispersive spectroscopy line scans showed that the thickest atomic diffusion layer occurred at the front waist.The present combination of experimental and computational analyses provides insights into the underlying mechanism of mechanically improved metal composites prepared by CCRB.展开更多
基金supported by the National Key Research and Development Program of China(No.2018YFA0707300)the National Natural Science Foundation of China(Nos.51901151,51905372,52275362,52171122)China Postdoctoral Science Foundation(Nos.2020M680918,2021T140503)。
基金supported by the National Natural Science Foundation of China(No.22376058).
文摘We modified Zr/Ce-UiO-66-NH_(2) using dual bimetallization and amination strategies to efficiently extract uranium from water resources.XRD,FTIR,and XPS indicated the successful alteration of material amination.Moreover,the metal Zr was partially replaced by Ce in Zr-oxygen atom clusters in Zr/Ce-UiO-66-NH_(2).It possessed commendable structural stability in acidic and alkaline solutions.Irrespective of whether it was submerged in a 6 M strong acid or in a 0.5M strong base solution,the structural integrity of Zr/Ce-UiO-66-NH_(2) remained unaffected.Batch experiments at pH=6.0 revealed that uranium adsorption by Zr/Ce-UiO-66-NH_(2) reached 376.8 mg g^(−1) and 611.33 mg g^(−1) at 298 K and 328 K,respectively.These values are much better than those obtained using bimetallic-modified Zr/Ce-UiO-66 or amine-functionalized UiO-66-NH_(2).After five consecutive sorption and desorption cycles,the material retained a uranium removal rate of more than 80%,proving its excellent regenerative properties.Kinetic modeling of U(VI)adsorption on Zr/Ce-UiO-66-NH_(2) implied that chemisorption dominated the rapid uranium sorption rate.We propose potential adsorption mechanisms involving three interactions:inner-sphere surface complexation,chemisorption,and electrostatic interactions.This study shows that the dual strategies of bimetallization and amination can effectively enhance U(VI)extraction from water.This approach has potential applications for the structural design of uranium adsorbents.
基金financially supported by the Major Program of National Natural Science Foundation of China (No. U1710254)Shanxi Province Science and Technology Major Projects (No.20181101008)+1 种基金the Scientific and Technological Progress of Shanxi Province Colleges and Universities (No.2017132)the National Natural Science Foundation of China (Nos.51974196, 51975398,and 51905372)。
文摘Corrugated cold roll bonding(CCRB) produces metal composite plate with improved mechanical properties compared with conventional methods,but the interfacial mechanism is not fully understood.Here,Cu/Al composite plate with good plate shape was produced by CCRB,and the bonding mechanism and strength along the corrugated interface were studied by experiments and finite element simulations.The results showed that the average bonding strength of Cu/Al composite plate produced by CCRB was nearly twice that of conventional composite plate at an average reduction of 40% during rolling.Strong friction shear stresses occurred at the interface of the corrugated composite plate,which promoted the plastic deformation of the metals and accelerated the rupture of the brittle interfacial layer.Electron backscattered diffraction analysis showed that higher degrees of grain elongation and refinement occurred in the matrices at the front waist and trough due to the stronger normal and shear stresses.Energy-dispersive spectroscopy line scans showed that the thickest atomic diffusion layer occurred at the front waist.The present combination of experimental and computational analyses provides insights into the underlying mechanism of mechanically improved metal composites prepared by CCRB.