期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
MoO_(3)/C-supported Pd nanoparticles as an efficient bifunctional electrocatalyst for ethanol oxidation and oxygen reduction reactions 被引量:2
1
作者 Mei-Ling Wang Jin Zhao +7 位作者 Jin-Jin Wang Jun-Ming Zhang Yu-Zhu Tian zhi-zhu yue Dong Li Tian-Jun Hu Jian-Feng Jia Hai-Shun Wu 《Rare Metals》 SCIE EI CAS CSCD 2023年第5期1516-1525,共10页
metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C s... metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C speciessupported Pd nanoparticles(Pd-MoO_(3)/C)using a convenient hydrothermal method,which exhibited excellent catalytic activities for both ethanol oxidation and oxygen reduction in KOH media.The specific activity of PdMoO_(3)/C toward ethanol oxidation with MoO_(3)loading(40wt%)was~2.6 times greater than that for the commercial Pd/C(10 wt%)with the same Pd content.In particular,the activity could effectively hold up to~60%of its maximum activity after 500-cycle tests,demonstrating improved cyclical stability.Notably,the fast electron transfer kinetics toward oxygen reduction for Pd-MoO_(3)/C(40%)were also comparable to those of commercial Pt/C(20 wt%)catalysts.These superior electrochemical features are primarily derived from the stronger electronic coupling between Pd and MoO_(3)through charge transfer,which can supply more active centers and improve the anti-poisoning ability.Meanwhile,the MoO_(3)species in the Pd-MoO_(3)/C composite may provide additional benefits in terms of electrical conductivity and dispersion. 展开更多
关键词 Bifunctional electrocatalyst Ethanol oxidation reaction(EOR) metal oxide electronic interaction MoO_(3)species Oxygen reduction reaction(ORR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部