metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C s...metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C speciessupported Pd nanoparticles(Pd-MoO_(3)/C)using a convenient hydrothermal method,which exhibited excellent catalytic activities for both ethanol oxidation and oxygen reduction in KOH media.The specific activity of PdMoO_(3)/C toward ethanol oxidation with MoO_(3)loading(40wt%)was~2.6 times greater than that for the commercial Pd/C(10 wt%)with the same Pd content.In particular,the activity could effectively hold up to~60%of its maximum activity after 500-cycle tests,demonstrating improved cyclical stability.Notably,the fast electron transfer kinetics toward oxygen reduction for Pd-MoO_(3)/C(40%)were also comparable to those of commercial Pt/C(20 wt%)catalysts.These superior electrochemical features are primarily derived from the stronger electronic coupling between Pd and MoO_(3)through charge transfer,which can supply more active centers and improve the anti-poisoning ability.Meanwhile,the MoO_(3)species in the Pd-MoO_(3)/C composite may provide additional benefits in terms of electrical conductivity and dispersion.展开更多
基金financially supported by the Natural Science Foundation of Shanxi Province(No.201901D111277)the National Natural Science Foundation of China(No.21571119)+1 种基金the Graduate Science and Technology Innovation Project Foundation of Shanxi Normal University(No.2021DCXM71)the Program for New Century Excellent Talents in University(No.NCET-12-1035)。
文摘metal oxide electronic interactions in composite electrocatalysts have a considerable impact on their catalytic capability.In this study,we successfully synthesized an electrocatalytic material composed of MoO_(3)/C speciessupported Pd nanoparticles(Pd-MoO_(3)/C)using a convenient hydrothermal method,which exhibited excellent catalytic activities for both ethanol oxidation and oxygen reduction in KOH media.The specific activity of PdMoO_(3)/C toward ethanol oxidation with MoO_(3)loading(40wt%)was~2.6 times greater than that for the commercial Pd/C(10 wt%)with the same Pd content.In particular,the activity could effectively hold up to~60%of its maximum activity after 500-cycle tests,demonstrating improved cyclical stability.Notably,the fast electron transfer kinetics toward oxygen reduction for Pd-MoO_(3)/C(40%)were also comparable to those of commercial Pt/C(20 wt%)catalysts.These superior electrochemical features are primarily derived from the stronger electronic coupling between Pd and MoO_(3)through charge transfer,which can supply more active centers and improve the anti-poisoning ability.Meanwhile,the MoO_(3)species in the Pd-MoO_(3)/C composite may provide additional benefits in terms of electrical conductivity and dispersion.