In this paper, we consider an inference method for recurrent event data in which the primary exposure covariate is assessed only in a validation set, while as an auxiliary covariate for the main exposure is available ...In this paper, we consider an inference method for recurrent event data in which the primary exposure covariate is assessed only in a validation set, while as an auxiliary covariate for the main exposure is available for the full cohort. Additive rate model is considered. The existing estimating equations in the absence of primary exposure are corrected by taking use of the validation data and auxiliary information, which yield consistent and asymptotically normal estimators of the regression parameters. The estimated baseline mean process is shown to converge weakly to a zero-mean Gaussian process. Extensive simulations are conducted to evaluate finite sample performance.展开更多
基金Supported by the National Natural Science Foundation of China(No.11571263,11371299)
文摘In this paper, we consider an inference method for recurrent event data in which the primary exposure covariate is assessed only in a validation set, while as an auxiliary covariate for the main exposure is available for the full cohort. Additive rate model is considered. The existing estimating equations in the absence of primary exposure are corrected by taking use of the validation data and auxiliary information, which yield consistent and asymptotically normal estimators of the regression parameters. The estimated baseline mean process is shown to converge weakly to a zero-mean Gaussian process. Extensive simulations are conducted to evaluate finite sample performance.