Background and Objective Since its initial report by James Parkinson in 1817,Parkinson’s disease(PD)has remained a central subject of research and clinical advancement.The disease is estimated to affect approximately...Background and Objective Since its initial report by James Parkinson in 1817,Parkinson’s disease(PD)has remained a central subject of research and clinical advancement.The disease is estimated to affect approximately 1%of adults aged 60 and above.Deep brain stimulation,emerging as an alternative therapy for end-stage cases,has offered a lifeline to numerous patients.This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade.Methods Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology(China).The search strategy encompassed the following keywords:“deep brain stimulation”,“Parkinson’s disease”,“motor pathway”,and“human”,from January 1,2012,to December 1,2022.Additionally,this review visualized the findings using the Citespace software.Results The results indicated that the United States,the United Kingdom,Germany,and China were the primary contributors to this research field.University College London,Capital Medical University,and Maastricht University were the top 3 research institutions in the research area.Tom Foltynie ranked first with 6 publications,and the journals of Brain and Brain Stimulation published the greatest number of relevant articles.The prevailing research focal points in this domain,as determined by keywords“burst analysis”,“encompassed neuronal activity”,“nucleus”,“hyper direct pathway”,etc.Conclusion This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD,which can shed light on future research to advance our comprehension of this particular field of study.展开更多
The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory(NSRL)is a diffraction-limited storage ring(DLSR),which plans to use a full energy linac as the injector.To ensure inject...The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory(NSRL)is a diffraction-limited storage ring(DLSR),which plans to use a full energy linac as the injector.To ensure injection efficiency,the injection beam needs to have low emittance.Therefore,a photocathode radio frequency(RF)gun was developed in the HALF R&D project.The gun is designed to deliver high-quality electron bunches with a typically 0.5 nC charge and~4.5 MeV energy with low emittance.The initial system commission with an electron beam was completed at the end of 2020,and a stable 1.2–1.4 mm.mrad emittance with a bunch charge of 500 pC was demonstrated.In this paper,we report the experimental results and experience obtained during the commission,including the RF gun,drive laser system,and beam diagnostics.展开更多
Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described ...Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described a laser dispersion method applied in the apparatus combining the high-n H atom Rydberg tagging time-of-flight technique with the vacuum ultraviolet free electron laser(VUV FEL).The Lyman-αlaser beam(121.6 nm)used in the H-atom detection was generated by the difference frequency four-wave mixing schemes in a Kr/Ar gas cell.After passing through an off-axis biconvex LiF lens,the 121.6 nm beam was dispersed from the 212.6 nm and 845 nm beams due to the different deflection angles experienced by these laser beams at the surfaces of the biconvex lens.This method can eliminate the background signal from the 212.6 nm photolysis.Combined with the VUV FEL,photodissociation of H2S at 122.95 nm was studied successfully.The TOF spectrum was measured and the derived total kinetic energy release spectrum was displayed.The results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics of molecules in the VUV region which involves the H-atom elimination processes.展开更多
Summary:Mechanisms of pruritus are implicated in the dysregulation of the metabolites in the spinal cord.We investigated pruritus behavioral testing in three groups of young adult male C57B1/6 mice,including one group...Summary:Mechanisms of pruritus are implicated in the dysregulation of the metabolites in the spinal cord.We investigated pruritus behavioral testing in three groups of young adult male C57B1/6 mice,including one group treated with normal saline,while the other groups intradermally injected with a-Me-5-HT(histamine-independent pruritogen),compound 48/80(histaminedependent pruritogen)at the nape skin of the neck,respectively.Proton nuclear magnetic resonance spectroscopy(MRS)was used to compare spinal metabolites from the vertebral cervical among three groups,and to study the association of spinal metabolite ratio and pruritus intensity.The MRS-measured N-acetylaspartate-to-myoinositol ratio(NAA/Ins)was significantly correlated with the number of scratches between normal saline group and 48/80 group or a-Me-5-HT group(both P<0.0001),indicating that NAA/Ins may be a robust surrogate marker of histamine-independent/dependent pruritogen.There was significant difference in Glu/Ins between normal saline group and 48/80 group(P=0.017),indicating that Glu/Ins may be a surrogate marker of histamine-dependent pruritogen,while GABA/Ins was highly significantly different between normal saline group and a-Me-5-HT group(P=0.008),suggesting that GABA/Ins may be a surrogate marker of histamineindependent pruritogen.MRS may reflect the extent of pruritus intensity elicited by a-Me-5-HT and compound 48/80 with sensitivity similar to the number of scratches,and above potential markers need to be further validated in pre-clinical and clinical treatment trials.展开更多
The ultrafast dynamics of water molecules excited to the two F states is studied by combining two-photon excitation and time-resolved photoelectron imaging techniques. The lifetimes of the F1A1 and F1B1 states of H2O ...The ultrafast dynamics of water molecules excited to the two F states is studied by combining two-photon excitation and time-resolved photoelectron imaging techniques. The lifetimes of the F1A1 and F1B1 states of H2O (D2O) were derived to be 1.0±0.3 (1.9±0.4) and 10±3 (30±10) ps, respectively. We propose that the F1A1 state mainly decays through the D state, due to the nonadiabatic coupling between them, while the F1B1 state decays through the F1A1 state via Coriolis interaction.展开更多
基金the National Natural Science Foundation of China(No.81873467 and No.81670240).
文摘Background and Objective Since its initial report by James Parkinson in 1817,Parkinson’s disease(PD)has remained a central subject of research and clinical advancement.The disease is estimated to affect approximately 1%of adults aged 60 and above.Deep brain stimulation,emerging as an alternative therapy for end-stage cases,has offered a lifeline to numerous patients.This review aimed to analyze publications pertaining to the impact of deep brain stimulation on the motor pathway in patients with PD over the last decade.Methods Data were obtained from the Web of Science Core Collection through the library of Huazhong University of Science and Technology(China).The search strategy encompassed the following keywords:“deep brain stimulation”,“Parkinson’s disease”,“motor pathway”,and“human”,from January 1,2012,to December 1,2022.Additionally,this review visualized the findings using the Citespace software.Results The results indicated that the United States,the United Kingdom,Germany,and China were the primary contributors to this research field.University College London,Capital Medical University,and Maastricht University were the top 3 research institutions in the research area.Tom Foltynie ranked first with 6 publications,and the journals of Brain and Brain Stimulation published the greatest number of relevant articles.The prevailing research focal points in this domain,as determined by keywords“burst analysis”,“encompassed neuronal activity”,“nucleus”,“hyper direct pathway”,etc.Conclusion This study has provided a new perspective through bibliometric analysis of the deep brain stimulation therapy for treating patients with PD,which can shed light on future research to advance our comprehension of this particular field of study.
基金supported by Hefei Advanced Light Facility R&D project and the National Natural Science Foundation of China (No.11775216)
文摘The Hefei Advanced Light Facility(HALF)proposed by the National Synchrotron Radiation Laboratory(NSRL)is a diffraction-limited storage ring(DLSR),which plans to use a full energy linac as the injector.To ensure injection efficiency,the injection beam needs to have low emittance.Therefore,a photocathode radio frequency(RF)gun was developed in the HALF R&D project.The gun is designed to deliver high-quality electron bunches with a typically 0.5 nC charge and~4.5 MeV energy with low emittance.The initial system commission with an electron beam was completed at the end of 2020,and a stable 1.2–1.4 mm.mrad emittance with a bunch charge of 500 pC was demonstrated.In this paper,we report the experimental results and experience obtained during the commission,including the RF gun,drive laser system,and beam diagnostics.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)the National Natural Science Foundation of China (NSFC Center for Chemical Dynamics (No.21688102)+4 种基金the National Natural Science Foundation of China (No.21673232, No.21873099, No.21922306)the International Partnership Program of Chinese Academy of Sci-ences (No.121421KYSB20170012)supported by the National Natural Science Foundation of China (No.21973010)supported by the National Natural Science Foundation of China (No.21773236)supported by the Natural Science Research Project of Education Department of Anhui Province (No.KJ2019A0521).
文摘Photodissociation of H2S in the VUV region plays an important role in the atmospheric chemistry and interstellar chemistry.To date,however,few studies have been focused on this topic.In this article,we have described a laser dispersion method applied in the apparatus combining the high-n H atom Rydberg tagging time-of-flight technique with the vacuum ultraviolet free electron laser(VUV FEL).The Lyman-αlaser beam(121.6 nm)used in the H-atom detection was generated by the difference frequency four-wave mixing schemes in a Kr/Ar gas cell.After passing through an off-axis biconvex LiF lens,the 121.6 nm beam was dispersed from the 212.6 nm and 845 nm beams due to the different deflection angles experienced by these laser beams at the surfaces of the biconvex lens.This method can eliminate the background signal from the 212.6 nm photolysis.Combined with the VUV FEL,photodissociation of H2S at 122.95 nm was studied successfully.The TOF spectrum was measured and the derived total kinetic energy release spectrum was displayed.The results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics of molecules in the VUV region which involves the H-atom elimination processes.
基金This work was supported by grants from the National Natural Science Foundation of China(No.81670240 and No.81873467)the Medical Innovation Project in Fujian Province(No.2017-CX-48).
文摘Summary:Mechanisms of pruritus are implicated in the dysregulation of the metabolites in the spinal cord.We investigated pruritus behavioral testing in three groups of young adult male C57B1/6 mice,including one group treated with normal saline,while the other groups intradermally injected with a-Me-5-HT(histamine-independent pruritogen),compound 48/80(histaminedependent pruritogen)at the nape skin of the neck,respectively.Proton nuclear magnetic resonance spectroscopy(MRS)was used to compare spinal metabolites from the vertebral cervical among three groups,and to study the association of spinal metabolite ratio and pruritus intensity.The MRS-measured N-acetylaspartate-to-myoinositol ratio(NAA/Ins)was significantly correlated with the number of scratches between normal saline group and 48/80 group or a-Me-5-HT group(both P<0.0001),indicating that NAA/Ins may be a robust surrogate marker of histamine-independent/dependent pruritogen.There was significant difference in Glu/Ins between normal saline group and 48/80 group(P=0.017),indicating that Glu/Ins may be a surrogate marker of histamine-dependent pruritogen,while GABA/Ins was highly significantly different between normal saline group and a-Me-5-HT group(P=0.008),suggesting that GABA/Ins may be a surrogate marker of histamineindependent pruritogen.MRS may reflect the extent of pruritus intensity elicited by a-Me-5-HT and compound 48/80 with sensitivity similar to the number of scratches,and above potential markers need to be further validated in pre-clinical and clinical treatment trials.
基金supported by the National Natural Science Foundation of China (No.21573228, No.21833003, No.21673232, and No.21773236)the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDB17000000)
文摘The ultrafast dynamics of water molecules excited to the two F states is studied by combining two-photon excitation and time-resolved photoelectron imaging techniques. The lifetimes of the F1A1 and F1B1 states of H2O (D2O) were derived to be 1.0±0.3 (1.9±0.4) and 10±3 (30±10) ps, respectively. We propose that the F1A1 state mainly decays through the D state, due to the nonadiabatic coupling between them, while the F1B1 state decays through the F1A1 state via Coriolis interaction.