This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Cons...This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different products, production capacity of variety per hour, minimum or maximum batch size, and transfer time, we propose an available production capacity network with varietal compatibility and virtual occupancy for enhancing production plan implementation and quick adjustment in the case of dynamic production changes. Here available means the remaining production capacity after virtual occupancy.To quickly build an available production capacity network and increase the speed of algorithm solving, constraint selection and cutting methods with order priority were used for model solving. Finally, the genetic algorithm improved with local search was used to optimize the proposed production plan and significantly reduce the order delay rate. The validity of the proposed model and algorithm was numerically verified by simulating actual production practices. The simulation results demonstrate that the model and improved algorithm result in an effective production plan.展开更多
To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization...To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements.展开更多
基金financially supported by the National Natural Science Foundation of China (No.51274043)。
文摘This research attempts to devise a multistage and multiproduct short-term integrative production plan that can dynamically change based on the order priority and virtual occupancy for application in steel plants. Considering factors such as the delivery time, varietal compatibility between different products, production capacity of variety per hour, minimum or maximum batch size, and transfer time, we propose an available production capacity network with varietal compatibility and virtual occupancy for enhancing production plan implementation and quick adjustment in the case of dynamic production changes. Here available means the remaining production capacity after virtual occupancy.To quickly build an available production capacity network and increase the speed of algorithm solving, constraint selection and cutting methods with order priority were used for model solving. Finally, the genetic algorithm improved with local search was used to optimize the proposed production plan and significantly reduce the order delay rate. The validity of the proposed model and algorithm was numerically verified by simulating actual production practices. The simulation results demonstrate that the model and improved algorithm result in an effective production plan.
基金financially supported by the Fundamental Research Funds for the Central Universities (No.FRF-MP20-08)。
文摘To deal with the increasing demand for low-volume customization of the mechanical properties of cold-rolled products, a two-way control method based on mechanical property prediction and process parameter optimization(PPO) has become an effective solution. Aiming at the multi-objective quality control problem of a company's cold-rolled products, based on industrial production data, we proposed a process parameter design and optimization method that combined multi-objective quality prediction and PPO. This method used the multi-output support vector regression(MSVR) method to simultaneously predict multiple quality indices. The MSVR prediction model was used as the effect verification model of the PPO results. It performed multi-process parameter collaborative design and realized the optimization of production process parameters for customized multi-objective quality requirements. The experimental results showed that, compared with the traditional single-objective quality prediction model based on support vector regression(SVR), the multi-objective prediction model could better take into account the coupling effect between process parameters and quality index, the MSVR model prediction accuracy was higher than that of the SVR, and the optimized process parameters were more capable and reflected the influence of metallurgical mechanism on the quality index,which were more in line with actual production process requirements.