Metabolic syndrome(MetS) and type 2 diabetes mellitus(T2DM) are the serious public health problems worldwide.Moreover,it is estimated that MetS patients have about five-fold greater risk of the T2 DM development compa...Metabolic syndrome(MetS) and type 2 diabetes mellitus(T2DM) are the serious public health problems worldwide.Moreover,it is estimated that MetS patients have about five-fold greater risk of the T2 DM development compared with people without the syndrome.Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2 DM.All three members of the peroxisome proliferator-activated receptor(PPAR) nuclear receptor subfamily,PPARα,PPARp/5 and PPARγ are critical in regulating insulin sensitivity,adipogenesis,lipid metabolism,and blood pressure.Recently,more and more studies indicated that the gene polymorphism of PPARs,such as Leu^(162)Val and Val^(227)Ala of PPARα,+294T> C of PPARβ/δ,Pro^(12)Ala and C1431 T of PPARγ,are significantly associated with the onset and progressing of MetS and T2 DM in different population worldwide.Furthermore,a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes.However,given the complexity pathogenesis of metabolic disease,it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes.Thus,gene-gene interactions and gene-environment interactions associated with T2 DM and MetS need future comprehensive studies.展开更多
Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr6dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanc...Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr6dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanced by two few-cycle pulses compared with the level achievable by a single few-cycle pulse as long as the time delay between two pulses is chosen properly, and the pulse duration of two lasers plays an important role in the aligning process of D2 molecules.展开更多
The peroxisome proliferator-activated receptors (PPARs) -α, -δ/β and -γ are the ligand-activated transcription factors that function as the master regulators of glucose, fatty acid and lipoprotein metabolism, en...The peroxisome proliferator-activated receptors (PPARs) -α, -δ/β and -γ are the ligand-activated transcription factors that function as the master regulators of glucose, fatty acid and lipoprotein metabolism, energy balance, cell proliferation and differentiation, inflarn- marion, and atherosclerosis. The objective of the current study was to examine the main and interactive effect of seven single nucleotide polymorphisms (SNPs) of PPARδ/γ, in contribution to abdominal obesity. A total of 820 subjects were randomly selected and no indi- viduals were related. The selected S NPs in PPARδ (rs2016520 and rs9794) and PPARγ (rs10865710, rs 1805192, rs709158, rs3856806, and rs4684847) were genotyped. Mean difference and 95% confident interval were calculated. Interactions were explored by the method of generalized multifactor dimensionality reduction. After adjustment for gender, age, and smoking status, it was found that the carriers of the C allele (TC + CC) of rs2016520 were associated with a decreased risk of abdominal obesity compared to the carriers of the TT genotype (mean difference = -2.63, 95% CI = -3.61-1.64, P 〈 0.000t). A significant two-locus model (P = 0.0107) involving rs2016520 and rs 10865710 and a significant three-locus model (P = 0.0107) involving rs2016520, rs9794, and rs 1805192 were observed. Overall, the three-locus model had the highest level of testing accuracy (59.85%) and showed a better cross-validation consistency (9/10) than two-locus model. Therefore, for abdominal obesity defined by waist circumference, we chose the three-locus model as the best interaction model. In conclusion, the C allele in rs2016520 was significantly associated with a lower abdominal obesity. Moreover, an interaction among rs2016520, rs1805192, and rs9794 on incident abdominal obesity could be demonstrated.展开更多
文摘Metabolic syndrome(MetS) and type 2 diabetes mellitus(T2DM) are the serious public health problems worldwide.Moreover,it is estimated that MetS patients have about five-fold greater risk of the T2 DM development compared with people without the syndrome.Peroxisome proliferator-activated receptors are a subgroup of the nuclear hormone receptor superfamily of ligand-activated transcription factors which play an important role in the pathogenesis of MetS and T2 DM.All three members of the peroxisome proliferator-activated receptor(PPAR) nuclear receptor subfamily,PPARα,PPARp/5 and PPARγ are critical in regulating insulin sensitivity,adipogenesis,lipid metabolism,and blood pressure.Recently,more and more studies indicated that the gene polymorphism of PPARs,such as Leu^(162)Val and Val^(227)Ala of PPARα,+294T> C of PPARβ/δ,Pro^(12)Ala and C1431 T of PPARγ,are significantly associated with the onset and progressing of MetS and T2 DM in different population worldwide.Furthermore,a large body of evidence demonstrated that the glucose metabolism and lipid metabolism were influenced by gene-gene interaction among PPARs genes.However,given the complexity pathogenesis of metabolic disease,it is unlikely that genetic variation of a single locus would provide an adequate explanation of inter-individual differences which results in diverse clinical syndromes.Thus,gene-gene interactions and gene-environment interactions associated with T2 DM and MetS need future comprehensive studies.
文摘Dynamic alignment of D2 induced by two few-cycle pulses was investigated by solving the time-dependent Schr6dinger equation numerically based on a rigid rotor model. The results show that alignment of D2 can be enhanced by two few-cycle pulses compared with the level achievable by a single few-cycle pulse as long as the time delay between two pulses is chosen properly, and the pulse duration of two lasers plays an important role in the aligning process of D2 molecules.
基金supported in part by the grants from the Scientific Research Fund of National Ministry of Health(WKJ 2004-2-014)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The peroxisome proliferator-activated receptors (PPARs) -α, -δ/β and -γ are the ligand-activated transcription factors that function as the master regulators of glucose, fatty acid and lipoprotein metabolism, energy balance, cell proliferation and differentiation, inflarn- marion, and atherosclerosis. The objective of the current study was to examine the main and interactive effect of seven single nucleotide polymorphisms (SNPs) of PPARδ/γ, in contribution to abdominal obesity. A total of 820 subjects were randomly selected and no indi- viduals were related. The selected S NPs in PPARδ (rs2016520 and rs9794) and PPARγ (rs10865710, rs 1805192, rs709158, rs3856806, and rs4684847) were genotyped. Mean difference and 95% confident interval were calculated. Interactions were explored by the method of generalized multifactor dimensionality reduction. After adjustment for gender, age, and smoking status, it was found that the carriers of the C allele (TC + CC) of rs2016520 were associated with a decreased risk of abdominal obesity compared to the carriers of the TT genotype (mean difference = -2.63, 95% CI = -3.61-1.64, P 〈 0.000t). A significant two-locus model (P = 0.0107) involving rs2016520 and rs 10865710 and a significant three-locus model (P = 0.0107) involving rs2016520, rs9794, and rs 1805192 were observed. Overall, the three-locus model had the highest level of testing accuracy (59.85%) and showed a better cross-validation consistency (9/10) than two-locus model. Therefore, for abdominal obesity defined by waist circumference, we chose the three-locus model as the best interaction model. In conclusion, the C allele in rs2016520 was significantly associated with a lower abdominal obesity. Moreover, an interaction among rs2016520, rs1805192, and rs9794 on incident abdominal obesity could be demonstrated.