Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promis...Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promising neuroprotective agents.We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment.In this study,41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group(hypothermia alone for 72 hours,n = 20) and erythropoietin group(hypothermia + erythropoietin 200 IU/kg for 10 days,n = 21).Our results show that compared with the control group,serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days.However,neurodevelopmental outcome was similar between the two groups at 9 months of age.These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome.展开更多
The objective of this work is to reveal the effect of a passive control method called wedge-type cavitating-bubble generator(WCG)on the cloud cavitation dynamics of National Advisory Committee for Aeronautics(NACA)66 ...The objective of this work is to reveal the effect of a passive control method called wedge-type cavitating-bubble generator(WCG)on the cloud cavitation dynamics of National Advisory Committee for Aeronautics(NACA)66 hydrofoil.The simulations are performed using the Partially-averaged Navier-Stokes(PANS)method coupled with the Zwart cavitation model.The proper orthogonal decomposition(POD)method is applied to extract the dominant flow structures.The results show that the WCG can induce the attached cavity to occur just behind the WCG instead of the hydrofoil leading edge.During the periodical time-evolution process of the unsteady cavity,it is found that the attached cavity with a larger scale around the hydrofoil with WCG has a rougher surface,accompanied with more shedding behaviors of small cavities.This is further illustrated by the POD modes,that is,the mode 1 and modes 2–4 present the large and small cavity vortex structures respectively.Meanwhile,the dominant frequencies of 50 Hz,47.5 Hz are given by the POD method respectively for the hydrofoils without and with WCG,which is in good agreement with that of FFT analysis.In addition,the correlation distribution of POD modal coefficients shows that the WCG can strengthen the vortex energy as well as the turbulence intensity.展开更多
It is secure for customers to store and share their sensitive data in the cryptographic cloud storage.However,the revocation operation is a sure performance killer in the cryptographic access control system.To optimiz...It is secure for customers to store and share their sensitive data in the cryptographic cloud storage.However,the revocation operation is a sure performance killer in the cryptographic access control system.To optimize the revocation procedure,we present a new efficient revocation scheme which is efficient,secure,and unassisted.In this scheme,the original data are first divided into a number of slices,and then published to the cloud storage.When a revocation occurs,the data owner needs only to retrieve one slice,and re-encrypt and re-publish it.Thus,the revocation process is accelerated by affecting only one slice instead of the whole data.We have applied the efficient revocation scheme to the ciphertext-policy attribute-based encryption(CP-ABE) based cryptographic cloud storage.The security analysis shows that our scheme is computationally secure.The theoretically evaluated and experimentally measured performance results show that the efficient revocation scheme can reduce the data owner's workload if the revocation occurs frequently.展开更多
When it is generated in extreme vicinity to a water surface,an oscillating bubble bursts into the atmosphere and high-pressure gas is simultaneously exhausted from it,forming a splash sheet and an open cavity.The dyna...When it is generated in extreme vicinity to a water surface,an oscillating bubble bursts into the atmosphere and high-pressure gas is simultaneously exhausted from it,forming a splash sheet and an open cavity.The dynamics of the splash sheet induced by the bursting of the oscillating bubble has drawn increasing attention,but it is not clearly understood.We conduct a numerical simulation in the framework of open-source software OpenFOAM.The volume of fluid and Reynolds-Averaged Navier-Stokes methods are used to precisely capture the gas-liquid interface and obtain flow structure,respectively.In addition,an experimental setup is carried out based on an object distance compensation method for validation of the numerical model.Two patterns are summarized:(1)An open splash,(2)A sealed splash depending on whether a splash sheet completely closes.Detailed numerical results shows that the bubble bursting is induced by the Rayleigh-Taylor instability.Finally,the splash closures are discussed for two patterns.展开更多
This paper investigates the unsteady structures and the hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil fixed at ?= 0?, 5? and 8?, for various cavitation numbers, from...This paper investigates the unsteady structures and the hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil fixed at ?= 0?, 5? and 8?, for various cavitation numbers, from subcavitating flow to supercavitation. The high-speed video camera and the particle image velocimetry(PIV) are applied to observe the transient flow structures. Statistics of the cavity lengths, the velocity and vorticity distributions, as well as the turbulent intensities are presented to quantify the unsteady process. Meanwhile, the dynamic measurement system is used to record the dynamic characteristics. The experimental results show that the flow structures and the hydrodynamics of the cavitation vary considerably with various combinations of angles of attack and cavitation numbers. Under various conditions, the cavitation can be generally grouped as the inception cavitation, the sheet cavitation, the cloud cavitation and the supercavitation. The cloud cavitation exhibits noticeable unsteady characteristics. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of the load fluctuation is much higher in the cloud cavitating cases.展开更多
基金supported by a grant from the Health and Family Planning Commission of Hebei Province of China,No.20150033a grant from the Science and Technology Research and Development Project of Handan City of Hebei Province of China,No.152810879-6
文摘Although hypothermia therapy is effective to treat neonatal hypoxic-ischemic encephalopathy,many neonatal patients die or suffer from severe neurological dysfunction.Erythropoietin is considered one of the most promising neuroprotective agents.We hypothesized that erythropoietin combined with hypothermia will improve efficacy of neonatal hypoxic-ischemic encephalopathy treatment.In this study,41 neonates with moderate/severe hypoxic-ischemic encephalopathy were randomly divided into a control group(hypothermia alone for 72 hours,n = 20) and erythropoietin group(hypothermia + erythropoietin 200 IU/kg for 10 days,n = 21).Our results show that compared with the control group,serum tau protein levels were lower and neonatal behavioral neurological assessment scores higher in the erythropoietin group at 8 and 12 days.However,neurodevelopmental outcome was similar between the two groups at 9 months of age.These findings suggest that erythropoietin combined with hypothermia reduces serum tau protein levels and improves neonatal behavioral neurology outcome but does not affect long-term neurodevelopmental outcome.
基金Project supported by the National Natural Science Foundation of China(Grant No.52076108).
文摘The objective of this work is to reveal the effect of a passive control method called wedge-type cavitating-bubble generator(WCG)on the cloud cavitation dynamics of National Advisory Committee for Aeronautics(NACA)66 hydrofoil.The simulations are performed using the Partially-averaged Navier-Stokes(PANS)method coupled with the Zwart cavitation model.The proper orthogonal decomposition(POD)method is applied to extract the dominant flow structures.The results show that the WCG can induce the attached cavity to occur just behind the WCG instead of the hydrofoil leading edge.During the periodical time-evolution process of the unsteady cavity,it is found that the attached cavity with a larger scale around the hydrofoil with WCG has a rougher surface,accompanied with more shedding behaviors of small cavities.This is further illustrated by the POD modes,that is,the mode 1 and modes 2–4 present the large and small cavity vortex structures respectively.Meanwhile,the dominant frequencies of 50 Hz,47.5 Hz are given by the POD method respectively for the hydrofoils without and with WCG,which is in good agreement with that of FFT analysis.In addition,the correlation distribution of POD modal coefficients shows that the WCG can strengthen the vortex energy as well as the turbulence intensity.
基金Project (Nos. 61070037,61070201,and 61103016) supported by the National Natural Science Foundation of China
文摘It is secure for customers to store and share their sensitive data in the cryptographic cloud storage.However,the revocation operation is a sure performance killer in the cryptographic access control system.To optimize the revocation procedure,we present a new efficient revocation scheme which is efficient,secure,and unassisted.In this scheme,the original data are first divided into a number of slices,and then published to the cloud storage.When a revocation occurs,the data owner needs only to retrieve one slice,and re-encrypt and re-publish it.Thus,the revocation process is accelerated by affecting only one slice instead of the whole data.We have applied the efficient revocation scheme to the ciphertext-policy attribute-based encryption(CP-ABE) based cryptographic cloud storage.The security analysis shows that our scheme is computationally secure.The theoretically evaluated and experimentally measured performance results show that the efficient revocation scheme can reduce the data owner's workload if the revocation occurs frequently.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12293000,12293003,12293004,12122214,12202291 and 12272382)the Youth Innovation Promotion Association CAS(Grant No.2022019).
文摘When it is generated in extreme vicinity to a water surface,an oscillating bubble bursts into the atmosphere and high-pressure gas is simultaneously exhausted from it,forming a splash sheet and an open cavity.The dynamics of the splash sheet induced by the bursting of the oscillating bubble has drawn increasing attention,but it is not clearly understood.We conduct a numerical simulation in the framework of open-source software OpenFOAM.The volume of fluid and Reynolds-Averaged Navier-Stokes methods are used to precisely capture the gas-liquid interface and obtain flow structure,respectively.In addition,an experimental setup is carried out based on an object distance compensation method for validation of the numerical model.Two patterns are summarized:(1)An open splash,(2)A sealed splash depending on whether a splash sheet completely closes.Detailed numerical results shows that the bubble bursting is induced by the Rayleigh-Taylor instability.Finally,the splash closures are discussed for two patterns.
基金Project supported by the National Natural Science Foundation of China(Grant No.51306020)the Natural Science Foundation of Beijing(Grant No.3144034)
文摘This paper investigates the unsteady structures and the hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil fixed at ?= 0?, 5? and 8?, for various cavitation numbers, from subcavitating flow to supercavitation. The high-speed video camera and the particle image velocimetry(PIV) are applied to observe the transient flow structures. Statistics of the cavity lengths, the velocity and vorticity distributions, as well as the turbulent intensities are presented to quantify the unsteady process. Meanwhile, the dynamic measurement system is used to record the dynamic characteristics. The experimental results show that the flow structures and the hydrodynamics of the cavitation vary considerably with various combinations of angles of attack and cavitation numbers. Under various conditions, the cavitation can be generally grouped as the inception cavitation, the sheet cavitation, the cloud cavitation and the supercavitation. The cloud cavitation exhibits noticeable unsteady characteristics. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of the load fluctuation is much higher in the cloud cavitating cases.