Polaritons are quasi-particles that combine light with matter,enabling precise control of light at deep subwavelength scales.The excitation and propagation of polaritons are closely linked to the structural symmetries...Polaritons are quasi-particles that combine light with matter,enabling precise control of light at deep subwavelength scales.The excitation and propagation of polaritons are closely linked to the structural symmetries of the host materials,resulting in symmetrical polariton propagation in high-symmetry materials.However,in low-symmetry crystals,symmetry-broken polaritons exist,exhibiting enhanced directionality of polariton propagation for nanoscale light manipulation and steering.Here,we theoretically propose and experimentally demonstrate the existence of symmetry-broken polaritons,with hyperbolic dispersion,in a high-symmetry crystal.We show that an optical disk-antenna positioned on the crystal surface can act as an in-plane polarized excitation source,enabling dynamic tailoring of the asymmetry of hyperbolic polariton propagation in the high-symmetry crystal over a broad frequency range.Additionally,we provide an intuitive analysis model that predicts the condition under which the asymmetric polaritonic behavior is maximized,which is corroborated by our simulations and experiments.Our results demonstrate that the directionality of polariton propagation can be conveniently configured,independent of the structure symmetry of crystals,providing a tuning knob for the polaritonic response and in-plane anisotropy in nanophotonic applications.展开更多
Micro/nanostructures have broad applications in diverse application fields, such as surface enhanced Raman spectroscopy (SERS), photocatalysis, field emission, photonic crystals, microfluidic devices, electrochemical ...Micro/nanostructures have broad applications in diverse application fields, such as surface enhanced Raman spectroscopy (SERS), photocatalysis, field emission, photonic crystals, microfluidic devices, electrochemical devices, etc. Using polystyrene (PS) spheres formed monolayer colloidal crystal templates as masks, scaffolds, or molds with different materials growth techniques, many different periodic nanostructured arrays can be obtained with the building units varied from nanoparticles, nanopores, nanorings, nanorods, to nanoshells. Significant progresses have been made on the synthesis of micro/nanostructures with efficient SERS response. In this review, we mainly focus on the various PS template-based fabrication techniques in realizing micro/nanostructured arrays and the SERS applications.展开更多
基金the National Natural Science Foundation of China(Grant No.62075070 and 52172162)National Key Research and Development Program of China(Grant No.2021YFA1201500)+5 种基金Hubei Provincial Natural Science Foundation of China(Grant No.2022CFA053)the Innovation Fund of WNLOthe Natural Science Foundation of Guangdong Province(2022A1515012145)Shenzhen Science and Technology Program(JCYJ20220530162403007)Key Research and Development Plan of Hubei Provincethe Fundamental Research Funds for the Central Universities,HUST(Grant No.2022JYCXJJ009).
文摘Polaritons are quasi-particles that combine light with matter,enabling precise control of light at deep subwavelength scales.The excitation and propagation of polaritons are closely linked to the structural symmetries of the host materials,resulting in symmetrical polariton propagation in high-symmetry materials.However,in low-symmetry crystals,symmetry-broken polaritons exist,exhibiting enhanced directionality of polariton propagation for nanoscale light manipulation and steering.Here,we theoretically propose and experimentally demonstrate the existence of symmetry-broken polaritons,with hyperbolic dispersion,in a high-symmetry crystal.We show that an optical disk-antenna positioned on the crystal surface can act as an in-plane polarized excitation source,enabling dynamic tailoring of the asymmetry of hyperbolic polariton propagation in the high-symmetry crystal over a broad frequency range.Additionally,we provide an intuitive analysis model that predicts the condition under which the asymmetric polaritonic behavior is maximized,which is corroborated by our simulations and experiments.Our results demonstrate that the directionality of polariton propagation can be conveniently configured,independent of the structure symmetry of crystals,providing a tuning knob for the polaritonic response and in-plane anisotropy in nanophotonic applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.51371131,11375134,51571153)Jiangsu Provincial Natural Science Foundation(Grant No.BK20141217)the Fundamental Research Funds for the Central Universities(Grant No.2042015kf1012)
文摘Micro/nanostructures have broad applications in diverse application fields, such as surface enhanced Raman spectroscopy (SERS), photocatalysis, field emission, photonic crystals, microfluidic devices, electrochemical devices, etc. Using polystyrene (PS) spheres formed monolayer colloidal crystal templates as masks, scaffolds, or molds with different materials growth techniques, many different periodic nanostructured arrays can be obtained with the building units varied from nanoparticles, nanopores, nanorings, nanorods, to nanoshells. Significant progresses have been made on the synthesis of micro/nanostructures with efficient SERS response. In this review, we mainly focus on the various PS template-based fabrication techniques in realizing micro/nanostructured arrays and the SERS applications.