The Sun’s tenuous outer atmosphere,the corona,emits only about one-millionth as much light as the solar surface.In ancient times the corona was observed by human beings only during total solar eclipses,when the stron...The Sun’s tenuous outer atmosphere,the corona,emits only about one-millionth as much light as the solar surface.In ancient times the corona was observed by human beings only during total solar eclipses,when the strong emission of visible light from the photosphere was completely blocked by the Moon.In 1931,展开更多
Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,...Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.展开更多
Design and synthesis of highly efficient and cost-effective bifunctional catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remain a big challenge.Herein,a quaternary amorphous nanocompoun...Design and synthesis of highly efficient and cost-effective bifunctional catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remain a big challenge.Herein,a quaternary amorphous nanocompound Ni-Fe-P-B has been synthesized by a facile,scalable co-reduction method.The Ni-Fe-P-B exhibits high electrocatalytic activity and outstanding durability for both HER and OER,delivering a current density of 10 mA·cm^-2 at overpotentials of 220 and 269 mV,respectively.When loaded on carbon fiber paper(CFP)as a bifunctional catalyst,the Ni-Fe-P-B@CFP electrode requires a low cell voltage of 1.58 V to obtain 10 mA·cm^-2 for overall water splitting with negligible recession over 60 h.The excellent catalytic performances of Ni-Fe-P-B mainly benefit from the metal-metalloid combined composition modulation and the unique amorphous structure.This work provides new insights into the design of robust bifunctional catalysts for water splitting,and may promote the development of multicomponent amorphous catalysts.展开更多
Complications arising from tendon injury include tendon sheath infection and peritendinous adhesion, in which tendon adhesion often leads to serious motor dysfunction. In this work, the electrospun membranes of poly(L...Complications arising from tendon injury include tendon sheath infection and peritendinous adhesion, in which tendon adhesion often leads to serious motor dysfunction. In this work, the electrospun membranes of poly(L-lactide)(PLA) and poly(ε-caprolactone)(PCL) with different degradation kinetics were used to investigate their efficacy for anti-adhesion toward Achilles tendon repair. Compared with the PCL membrane, the PLA sample showed a faster rate of degradation in 42 d, and all the degradation media(i.e., phosphate-buffered saline) maintained at a constant p H of around 7.4. Meanwhile, the superior biocompatibility of both the PLA and PCL membranes were proved by the in vitro cellular adhesion tests and in vivo histopathological assays. Simultaneously, the PLA membrane was more effective than the PCL sample in decreasing adhesion and promoting functional recovery. Furthermore, the experiment result was further confirmed by hematoxylin-eosin and Masson's trichrome staining, and type I collagen immunohistochemical analysis. All results revealed that the model treated with the electrospun PLA membrane was obviously better with regard to both anti-adhesion and tendon repair than that in the PCL membrane group. Considering the results of degradation and adhesion prevention efficacy, the electrospun polyester membranes, especially the PLA one, would be applied with fascinating potential in clinical prevention of postoperative tendon adhesion.展开更多
基金supported by NSFC grants 11373065,11527804,41231069 and 41574166the Recruitment Program of Global Experts of Chinathe Max Planck Partner Group program
文摘The Sun’s tenuous outer atmosphere,the corona,emits only about one-millionth as much light as the solar surface.In ancient times the corona was observed by human beings only during total solar eclipses,when the strong emission of visible light from the photosphere was completely blocked by the Moon.In 1931,
基金supported by Grant(42271391 and 62006214)from National Natural Science Foundation of Chinaby Grant(8091B022148)from Joint Funds of Equipment Pre-Research and Ministry of Education of China+1 种基金by Grant(2023BIB015)from Special Project of Hubei Key Research and Development Programby Grant(KLIGIP-2021B03)from Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing.
文摘Snake Optimizer(SO)is a novel Meta-heuristic Algorithm(MA)inspired by the mating behaviour of snakes,which has achieved success in global numerical optimization problems and practical engineering applications.However,it also has certain drawbacks for the exploration stage and the egg hatch process,resulting in slow convergence speed and inferior solution quality.To address the above issues,a novel multi-strategy improved SO(MISO)with the assistance of population crowding analysis is proposed in this article.In the algorithm,a novel multi-strategy operator is designed for the exploration stage,which not only focuses on using the information of better performing individuals to improve the quality of solution,but also focuses on maintaining population diversity.To boost the efficiency of the egg hatch process,the multi-strategy egg hatch process is proposed to regenerate individuals according to the results of the population crowding analysis.In addition,a local search method is employed to further enhance the convergence speed and the local search capability.MISO is first compared with three sets of algorithms in the CEC2020 benchmark functions,including SO with its two recently discussed variants,ten advanced MAs,and six powerful CEC competition algorithms.The performance of MISO is then verified on five practical engineering design problems.The experimental results show that MISO provides a promising performance for the above optimization cases in terms of convergence speed and solution quality.
基金This work is financially supported by the National Natural Science Foundation of China(Nos.U1832138,51731002,51971008,51671010 and 51920105001)Fundamental Research Funds for the Central Universities.
文摘Design and synthesis of highly efficient and cost-effective bifunctional catalysts for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remain a big challenge.Herein,a quaternary amorphous nanocompound Ni-Fe-P-B has been synthesized by a facile,scalable co-reduction method.The Ni-Fe-P-B exhibits high electrocatalytic activity and outstanding durability for both HER and OER,delivering a current density of 10 mA·cm^-2 at overpotentials of 220 and 269 mV,respectively.When loaded on carbon fiber paper(CFP)as a bifunctional catalyst,the Ni-Fe-P-B@CFP electrode requires a low cell voltage of 1.58 V to obtain 10 mA·cm^-2 for overall water splitting with negligible recession over 60 h.The excellent catalytic performances of Ni-Fe-P-B mainly benefit from the metal-metalloid combined composition modulation and the unique amorphous structure.This work provides new insights into the design of robust bifunctional catalysts for water splitting,and may promote the development of multicomponent amorphous catalysts.
基金financially supported by the National Natural Science Foundation of China(51303174,51473165,51233004,51390484,51273196,51321062,51203153)the Scientific Development Program of Jilin Province(20140520050JH)
文摘Complications arising from tendon injury include tendon sheath infection and peritendinous adhesion, in which tendon adhesion often leads to serious motor dysfunction. In this work, the electrospun membranes of poly(L-lactide)(PLA) and poly(ε-caprolactone)(PCL) with different degradation kinetics were used to investigate their efficacy for anti-adhesion toward Achilles tendon repair. Compared with the PCL membrane, the PLA sample showed a faster rate of degradation in 42 d, and all the degradation media(i.e., phosphate-buffered saline) maintained at a constant p H of around 7.4. Meanwhile, the superior biocompatibility of both the PLA and PCL membranes were proved by the in vitro cellular adhesion tests and in vivo histopathological assays. Simultaneously, the PLA membrane was more effective than the PCL sample in decreasing adhesion and promoting functional recovery. Furthermore, the experiment result was further confirmed by hematoxylin-eosin and Masson's trichrome staining, and type I collagen immunohistochemical analysis. All results revealed that the model treated with the electrospun PLA membrane was obviously better with regard to both anti-adhesion and tendon repair than that in the PCL membrane group. Considering the results of degradation and adhesion prevention efficacy, the electrospun polyester membranes, especially the PLA one, would be applied with fascinating potential in clinical prevention of postoperative tendon adhesion.