This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation ...This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.展开更多
Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewat...Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewater crisis in the Northern Slope of Tianshan Mountains(NSTM) faces dual challenges because water demandsforfast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system featuresglacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes.The complex balance between water conservation and economic development is subtle. This paper investigateschanges in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variationsin glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, andstreamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibitedan apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier massloss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006–2011 at mosthydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface wateravailability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might berelated to groundwater pumping for irrigation. Human water use for agriculture and industry grew with theincrease in cultivated land area and gross domestic product (GDP). The increased agricultural water use wasstrongly associated with the expansion of oases. It is unclear whether water availability would remain high underfuture climatic and hydrological uncertainties, posing challenges to water management. In the context of rapidurban growth and climate change, balancing water for humans and nature is vital in achieving the SustainableDevelopment Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water,climate change, and socio-economic development in NSTM. It would also shed light on wise water managementunder environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.展开更多
In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temp...In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temperature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re- gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Nino Southem Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.展开更多
Using the southern limit of snowfall recorded in Chinese documents, chronologies of tree-ring width, and tree-ring stable oxygen isotope(δ^(18)O), the annual temperature anomaly in southern China during 1850–200...Using the southern limit of snowfall recorded in Chinese documents, chronologies of tree-ring width, and tree-ring stable oxygen isotope(δ^(18)O), the annual temperature anomaly in southern China during 1850–2009 is reconstructed using the method of signal decomposition and synthesis. The results show that the linear trend was 0.47℃(100 yr)^(-1)over 1871–2009,and the two most rapid warming intervals occurred in 1877–1938 and 1968–2007, at rates of 0.125℃(10 yr)^(-1)and 0.258℃(10 yr)^(-1), respectively. The decadal variation shows that the temperature in the moderate warm interval of the 1910s–1930s was notably lower than that of the 1980s–2000s, which suggests that the warming since the 1980s was unprecedented for the past 160 years, though a warming hiatus existed in the 2000s. Additionally, there was a rapid cooling starting from the 1860s,followed by a cold interval until the early 1890s, with the coldest years in 1892 and 1893. A slight temperature decline was also found from the 1940s to the late 1960s. This study provides an independent case to validate the global warming for the past 160 years and its hiatus recently, because the proxy data are not affected by urbanization.展开更多
Extreme drought events have increased,causing serious losses and damage to the social economy under current warming conditions.However,short-term meteorological data limit our understanding and projection of these ext...Extreme drought events have increased,causing serious losses and damage to the social economy under current warming conditions.However,short-term meteorological data limit our understanding and projection of these extremes.With the accumulation of proxy data,especially tree-ring data,large-scale precipitation field reconstruction has provided opportunities to explore underlying mechanisms further.Using point-by-point regression,we reconstructed the April-September precipitation field in China for the past~530 years on the basis of 590 proxy records,including 470 tree-ring width chronologies and 120 drought/flood indices.Our regression models explained average 50%of the variance in precipitation.In the statistical test on calibration and verification,our models passed the significance level that assured reconstruction quality.The reconstruction data performed well,showing consistency and better quality than previously reported reconstructions.The first three leading modes of variability in the reconstruction revealed the main distribution modes of precipitation over China.Wet/drought and extremely wet/drought years accounted for 12.81%/10.92%(68 years/58 years)and 1.69%/3.20%(9 years/17 years)of the past~530 years in China,respectively.Major extreme drought events can be identified explicitly in our reconstruction.The detailed features of the Chongzhen Great Drought(1637-1643),the Wanli Great Drought(1585-1590),and the Ding-Wu Great Famine(1874-1879),indicated the existence of potentially different underlying mechanisms that need further exploration.Although further improvements can be made for remote uninhabited areas and large deserts,our gridded reconstruction of April-September precipitation in China over the past~530 years can provide a solid database for studies on the attribution of climate change and the mechanism of extreme drought events.展开更多
Accurate reconstructed series are crucial for studying the differences in regional hydroclimatic variations in Europe over the past millennium.Using hierarchical clustering analysis and stepwise regression methods,we ...Accurate reconstructed series are crucial for studying the differences in regional hydroclimatic variations in Europe over the past millennium.Using hierarchical clustering analysis and stepwise regression methods,we reconstructed yearly time series of the summer standardized precipitation evapotranspiration index(SPEl)for six European regions over the past millennium.Our analysis also revealed prominent regional hydroclimatic differences in multidecadal signals over the past 500 years.For instance,in the 1500s-1570s(from the beginning of the 1500s to the end of the 1570s),drying trends were observed in northern and southeastern Europe,whereas southwestern Europe experienced a wetting trend.Moreover,drying trends were observed in northern and central Europe in the 1640s-1670s.Additionally,wetting trends were observed in western and central Europe during the 1830s-1850s,with drying trends in northern and southeastern Europe.Notably,the hydroclimatic variations in most European regions showed drying trends in the 1920s-1950s,especially in southern Europe.By utilizing large amounts of tree-ring samples and directly comparing regional hydroclimatic variations,our reconstructions provide a consistent and comprehensive dataset for further analysis.The reconstructed dataset is available at https://doi.org/10.57760/sciencedb.07215.展开更多
Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Mode...Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastem China is stud- ied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22-24 and quasi-70 yr over the North China Plain; 32-36, 44-48, and quasi-70 yr in the Jiang-Huai area; and 32-36 and 4448 yr in the Jiang-Nan area. Bandpass decomposition from observation, reconstruction, and simulation re- veals that the variability of summer precipitation over the North China Plain, Jiang-Huai area, and Jiang-Nan area, at scales of 20-35, 35-50, and 50-80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang-Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data-model comparison sug- gests that these decadal oscillations and their temporal evolution over eastem China, including the decadal shifts in the spatial pattem of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.展开更多
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA050800)the Key Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-TZ-G10)the National Natural Science Foundation of China (Grant No.41671201 and 91525101)
文摘This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)^(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.
基金This work is supported by the Third Xinjiang Scientific Expedition Program(Grant No.2021xjkk0800).Thanks to Professor Lu Zhang for his valuable comments.
文摘Water security is under threat worldwide from climate change. A warming climate would accelerate evaporationand cryosphere melting, leading to reduced water availability and unpredictable water supply. However, thewater crisis in the Northern Slope of Tianshan Mountains(NSTM) faces dual challenges because water demandsforfast-growing urban areas have put heavy pressure on water resources. The mountain-oasis-desert system featuresglacier-fed rivers that sustain intensive water use in the oasis and end in the desert as fragile terminal lakes.The complex balance between water conservation and economic development is subtle. This paper investigateschanges in hydroclimatic variables and water security-related issues on the NSTM. The spatiotemporal variationsin glaciers, climatic variables, rivers, lakes and reservoirs, groundwater, surface water, human water use, andstreamflow were analyzed for the past four decades. The results show that temperature in the NSTM exhibitedan apparent upward trend with a more significant warming rate in the higher altitude regions. Glacier massloss and shrinkage was strong. The average annual streamflow increased from 1980-1989 to 2006–2011 at mosthydrological stations. The monthly dynamics of surface water area showed notable variability at both inter-annual and seasonal scales, revealing the impacts of both natural and anthropogenic drivers on surface wateravailability in the region. The terrestrial water storage anomaly showed a decreasing trend, which might berelated to groundwater pumping for irrigation. Human water use for agriculture and industry grew with theincrease in cultivated land area and gross domestic product (GDP). The increased agricultural water use wasstrongly associated with the expansion of oases. It is unclear whether water availability would remain high underfuture climatic and hydrological uncertainties, posing challenges to water management. In the context of rapidurban growth and climate change, balancing water for humans and nature is vital in achieving the SustainableDevelopment Goals (SDGs) in NSTM. This study provides a baseline understanding of the interplay among water,climate change, and socio-economic development in NSTM. It would also shed light on wise water managementunder environmental changes for other rapidly developing mountain-oasis-desert systems worldwide.
基金support of the National Natural Science Foundation of China (Grant No. 41201200)the CAS Strategic Priority Research Program (Grant No. XDA05080101)
文摘In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temperature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re- gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Nino Southem Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA05090104)the National Natural Science Foundation of China(Grant Nos.41430528 and 41671201)
文摘Using the southern limit of snowfall recorded in Chinese documents, chronologies of tree-ring width, and tree-ring stable oxygen isotope(δ^(18)O), the annual temperature anomaly in southern China during 1850–2009 is reconstructed using the method of signal decomposition and synthesis. The results show that the linear trend was 0.47℃(100 yr)^(-1)over 1871–2009,and the two most rapid warming intervals occurred in 1877–1938 and 1968–2007, at rates of 0.125℃(10 yr)^(-1)and 0.258℃(10 yr)^(-1), respectively. The decadal variation shows that the temperature in the moderate warm interval of the 1910s–1930s was notably lower than that of the 1980s–2000s, which suggests that the warming since the 1980s was unprecedented for the past 160 years, though a warming hiatus existed in the 2000s. Additionally, there was a rapid cooling starting from the 1860s,followed by a cold interval until the early 1890s, with the coldest years in 1892 and 1893. A slight temperature decline was also found from the 1940s to the late 1960s. This study provides an independent case to validate the global warming for the past 160 years and its hiatus recently, because the proxy data are not affected by urbanization.
基金National Key Research and Development Program of China(2018YFA0605601)Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20070101)National Natural Science Foundation of China(41572353,41401228,41690113)。
文摘Extreme drought events have increased,causing serious losses and damage to the social economy under current warming conditions.However,short-term meteorological data limit our understanding and projection of these extremes.With the accumulation of proxy data,especially tree-ring data,large-scale precipitation field reconstruction has provided opportunities to explore underlying mechanisms further.Using point-by-point regression,we reconstructed the April-September precipitation field in China for the past~530 years on the basis of 590 proxy records,including 470 tree-ring width chronologies and 120 drought/flood indices.Our regression models explained average 50%of the variance in precipitation.In the statistical test on calibration and verification,our models passed the significance level that assured reconstruction quality.The reconstruction data performed well,showing consistency and better quality than previously reported reconstructions.The first three leading modes of variability in the reconstruction revealed the main distribution modes of precipitation over China.Wet/drought and extremely wet/drought years accounted for 12.81%/10.92%(68 years/58 years)and 1.69%/3.20%(9 years/17 years)of the past~530 years in China,respectively.Major extreme drought events can be identified explicitly in our reconstruction.The detailed features of the Chongzhen Great Drought(1637-1643),the Wanli Great Drought(1585-1590),and the Ding-Wu Great Famine(1874-1879),indicated the existence of potentially different underlying mechanisms that need further exploration.Although further improvements can be made for remote uninhabited areas and large deserts,our gridded reconstruction of April-September precipitation in China over the past~530 years can provide a solid database for studies on the attribution of climate change and the mechanism of extreme drought events.
基金supported by the National Natural Science Foundation(41831174)National Key Research and Development Program of China(2017YFA0603300)China Scholarship Council(CSC,202018006010083).
文摘Accurate reconstructed series are crucial for studying the differences in regional hydroclimatic variations in Europe over the past millennium.Using hierarchical clustering analysis and stepwise regression methods,we reconstructed yearly time series of the summer standardized precipitation evapotranspiration index(SPEl)for six European regions over the past millennium.Our analysis also revealed prominent regional hydroclimatic differences in multidecadal signals over the past 500 years.For instance,in the 1500s-1570s(from the beginning of the 1500s to the end of the 1570s),drying trends were observed in northern and southeastern Europe,whereas southwestern Europe experienced a wetting trend.Moreover,drying trends were observed in northern and central Europe in the 1640s-1670s.Additionally,wetting trends were observed in western and central Europe during the 1830s-1850s,with drying trends in northern and southeastern Europe.Notably,the hydroclimatic variations in most European regions showed drying trends in the 1920s-1950s,especially in southern Europe.By utilizing large amounts of tree-ring samples and directly comparing regional hydroclimatic variations,our reconstructions provide a consistent and comprehensive dataset for further analysis.The reconstructed dataset is available at https://doi.org/10.57760/sciencedb.07215.
基金Supported by the National Natural Science Foundation of China(41430528 and 41471171)Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(TSYJS04,2014RC101,and 2015RC101)
文摘Based on observations made during recent decades, reconstructed precipitation for the period A.D. 1736-2000, dry-wet index data for A.D. 500-2000, and a 1000-yr control simulation using the Community Earth System Model with fixed pre-industrial external forcing, the decadal variability of summer precipitation over eastem China is stud- ied. Power spectrum analysis shows that the dominant cycles for the decadal variation of summer precipitation are: 22-24 and quasi-70 yr over the North China Plain; 32-36, 44-48, and quasi-70 yr in the Jiang-Huai area; and 32-36 and 4448 yr in the Jiang-Nan area. Bandpass decomposition from observation, reconstruction, and simulation re- veals that the variability of summer precipitation over the North China Plain, Jiang-Huai area, and Jiang-Nan area, at scales of 20-35, 35-50, and 50-80 yr, is not consistent across the entire millennium. We also find that the warm (cold) phase of the Pacific Decadal Oscillation generally corresponds to dry (wet) conditions over the North China Plain, but wet (dry) conditions in the Jiang-Nan area, from A.D. 1800, when the PDO became strengthened. However, such a correspondence does not exist throughout the entire last millennium. Data-model comparison sug- gests that these decadal oscillations and their temporal evolution over eastem China, including the decadal shifts in the spatial pattem of the precipitation anomaly observed in the late 1970s, early 1990s, and early 2000s, might result from internal variability of the climate system.