We analyzed two recently acquired multi- channel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continent...We analyzed two recently acquired multi- channel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continental margin can be divided into three stages with variable subsidence rate. A delay of tectonic subsidence existed in both areas after a break-up, which was likely related to the major mantle convection during seafloor spreading, that was triggered by the secondary mantle convection below the continental margin, in addition to the variation in lithospheric thickness. Mean-while, the stage with delayed subsidence rate differed along strikes. In the Reed Bank area, this stage is between 32-23.8 Ma, while in the Dangerous Grounds, it was much later (between 19-15.5 Ma). We believe the propagated rifting in the South China Sea dominated the changes of this delayed subsidence rate stage.展开更多
The sandstone-hosted uranium deposits in the SW Songliao Basin differ from typical sandstone-hosted uranium deposits in terms of the geological features of the ore-deposits,including the geometry of the orebodies,mine...The sandstone-hosted uranium deposits in the SW Songliao Basin differ from typical sandstone-hosted uranium deposits in terms of the geological features of the ore-deposits,including the geometry of the orebodies,mineral assemblage and petrography.Detailed drill core and microscopic observations,scanning electron microscopy(SEM),electron microprobe analysis(EMPA),heavy mineral concentrates,and fluid inclusion studies of the Upper Cretaceous Yaojia Formation,i.e.,the uranium-bearing layer,were integrated to investigate the roles of hydrothermal fluids in the formation of these uranium deposits.We found that the kaolinite alteration is developed in the mineralized zones,but it is less common in the peripheral areas.The fluid inclusions are hydrothermal fluids with a medium-low temperature(67 to 179 ℃) and a high salinity(5.9 wt.% to 20.1 wt.%).According to the analyses,three kinds of hydrothermal fluids,i.e.,the acid fluid,the groundwater heated by the mafic magma,and the alkaline fluid rich in Ca^(2+) and CO_(3)^(2-),were identified.The fluids might have low U content,but they have participated in the formation of the uranium deposits successively.Kaolinite formed by the acid-hydrothermal fluid absorbed large amounts of uranium.Subsequently,the thermal energy from the hydrothermal fluids changed the intrastratal redox environment and increased the solubility of the uranium minerals in the fluid.The alkaline-hydrothermal fluid rich in Ca^(2+) and C0_(3)^(2-) facilitated the formation of stable Ca-U(Ⅵ)-CO_(3) complex,which led to the enrichment of soluble uranium in solution,and final precipitation as pitchblende,brannerite and Ti-bearing uranium minerals in the uranium ores.展开更多
文摘We analyzed two recently acquired multi- channel seismic profiles across the Dangerous Grounds and the Reed Bank area in the South China Sea. Reconstruction of the tectonic subsidence shows that the southern continental margin can be divided into three stages with variable subsidence rate. A delay of tectonic subsidence existed in both areas after a break-up, which was likely related to the major mantle convection during seafloor spreading, that was triggered by the secondary mantle convection below the continental margin, in addition to the variation in lithospheric thickness. Mean-while, the stage with delayed subsidence rate differed along strikes. In the Reed Bank area, this stage is between 32-23.8 Ma, while in the Dangerous Grounds, it was much later (between 19-15.5 Ma). We believe the propagated rifting in the South China Sea dominated the changes of this delayed subsidence rate stage.
基金supported by the National Natural Science Foundation of China (Nos. U2067202, 41772068, 42172098)the Natural Science Foundation of Jiangxi Province (No. 20202BAB213017)+1 种基金the Joint Innovation Fund of China Uranium Industry Co., LTD and East China University of Technology (No. NRE2021-02)Open Foundation of State Key Laboratory of Nuclear Resources and Environment (No. JELRGBDT202007)。
文摘The sandstone-hosted uranium deposits in the SW Songliao Basin differ from typical sandstone-hosted uranium deposits in terms of the geological features of the ore-deposits,including the geometry of the orebodies,mineral assemblage and petrography.Detailed drill core and microscopic observations,scanning electron microscopy(SEM),electron microprobe analysis(EMPA),heavy mineral concentrates,and fluid inclusion studies of the Upper Cretaceous Yaojia Formation,i.e.,the uranium-bearing layer,were integrated to investigate the roles of hydrothermal fluids in the formation of these uranium deposits.We found that the kaolinite alteration is developed in the mineralized zones,but it is less common in the peripheral areas.The fluid inclusions are hydrothermal fluids with a medium-low temperature(67 to 179 ℃) and a high salinity(5.9 wt.% to 20.1 wt.%).According to the analyses,three kinds of hydrothermal fluids,i.e.,the acid fluid,the groundwater heated by the mafic magma,and the alkaline fluid rich in Ca^(2+) and CO_(3)^(2-),were identified.The fluids might have low U content,but they have participated in the formation of the uranium deposits successively.Kaolinite formed by the acid-hydrothermal fluid absorbed large amounts of uranium.Subsequently,the thermal energy from the hydrothermal fluids changed the intrastratal redox environment and increased the solubility of the uranium minerals in the fluid.The alkaline-hydrothermal fluid rich in Ca^(2+) and C0_(3)^(2-) facilitated the formation of stable Ca-U(Ⅵ)-CO_(3) complex,which led to the enrichment of soluble uranium in solution,and final precipitation as pitchblende,brannerite and Ti-bearing uranium minerals in the uranium ores.