期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Photonic matrix multiplication lights up photonicaccelerator and beyond 被引量:11
1
作者 Hailong Zhou Jianji Dong +9 位作者 Junwei Cheng Wenchan Dong Chaoran Huang Yichen Shen Qiming Zhang Min Gu Chao Qian Hongsheng Chen zhichao ruan Xinliang Zhang 《Light(Science & Applications)》 SCIE EI CAS CSCD 2022年第2期158-178,共21页
Matrix computation,as a fundamental building block of information processing in science and technology,contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms... Matrix computation,as a fundamental building block of information processing in science and technology,contributes most of the computational overheads in modern signal processing and artificial intelligence algorithms.Photonic accelerators are designed to accelerate specific categories of computing in the optical domain,especially matrix multiplication,to address the growing demand for computing resources and capacity.Photonic matrix multiplication has much potential to expand the domain of telecommunication,and artificial intelligence benefiting from its superior performance.Recent research in photonic matrix multiplication has flourished and may provide opportunities to develop applications that are unachievable at present by conventional electronic processors.In this review,we first introduce the methods of photonic matrix multiplication,mainly including the plane light conversion method,Mach–Zehnder interferometer method and wavelength division multiplexing method.We also summarize the developmental milestones of photonic matrix multiplication and the related applications.Then,we review their detailed advances in applications to optical signal processing and artificial neural networks in recent years.Finally,we comment on the challenges and perspectives of photonic matrix multiplication and photonic acceleration. 展开更多
关键词 INTERFEROMETER BEYOND MATRIX
原文传递
Optical phase mining by adjustable spatial differentiator 被引量:6
2
作者 Tengfeng Zhu Junyi Huang zhichao ruan 《Advanced Photonics》 EI CSCD 2020年第1期63-69,共7页
Phase is a fundamental resource for optical imaging but cannot be directly observed with intensity measurements.The existing methods to quantify a phase distribution rely on complex devices and structures and lead to ... Phase is a fundamental resource for optical imaging but cannot be directly observed with intensity measurements.The existing methods to quantify a phase distribution rely on complex devices and structures and lead to difficulties of optical alignment and adjustment.We experimentally demonstrate a phase mining method based on the so-called adjustable spatial differentiation,by analyzing the polarization of light reflection from a single planar dielectric interface.Introducing an adjustable bias,we create a virtual light source to render the measured images with a shadow-cast effect.From the virtual shadowed images,we can further recover the phase distribution of a transparent object with the accuracy of 0.05λRMS.Without any dependence on wavelength or material dispersion,this method directly stems from the intrinsic properties of light and can be generally extended to a broad frequency range. 展开更多
关键词 adjustable spatial differentiation phase mining REFLECTION POLARIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部