期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of minocycline on cerebral ischemia-reperfusion injury 被引量:4
1
作者 Yuanyin Zheng Lijuan Xu +4 位作者 Jinbao Yin zhichao zhong Hongling Fan Xi Li Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第10期900-908,共9页
Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture ... Minocylcine, a tetracycline derivate, has been shown to cross the blood-brain barrier and enter the central nervous system. In this study, cerebral ischemia-reperfusion injury models were established using the suture method, and minocycline was immediately injected intraperitoneally after cerebral ischemia-repeffusion (22.5 mg/kg, initially 45 mg/kg) at a 12-hour interval. Results showed that after minocycline treatment, the volume of cerebral infarction was significantly reduced, the number of surviving cell in the hippocampal CA1 region increased, the number of apoptotic cells decreased, the expression of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein was down-regulated, and the escape latency in the water maze test was significantly shortened compared with the ischemia-reperfusion group. Our experimental findings indicate that minocycline can protect against neuronal injury induced by focal ischemia-reperfusion, which may be mediated by the inhibition of caspase-3 and poly(adenosine diphosphate-ribose) polymerase-1 protein expression. 展开更多
关键词 neural regeneration brain injury MINOCYCLINE cerebral ischemia-reperfusion HIPPOCAMPUS poly(adenosine diphosphate-ribose) polymerase-1 caspase-3 apoptosis grants-supported paper NEUROREGENERATION
下载PDF
ClC-3 chloride channel in hippocampal neuronal apoptosis 被引量:3
2
作者 Lijuan Xu Shuling Zhang +4 位作者 Hongling Fan zhichao zhong Xi Li Xiaoxiao Jin Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第32期3047-3054,共8页
Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mm... Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol- lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was es- tablished by 0.5 mmol/L 3-morpholinosyndnomine (SIN-l), a nitric oxide donor. The models were then cultured with 0.1 mmol/L of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; the chloride channel blocker)for 18 hours. Neuronal survival was detected using the 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was assayed by Hoechst 33342-labeled neuronal DNA fluorescence staining. Western blot analysis and immunochemilumi- nescence staining were applied to determine the changes of activated caspase-3 and CIC-3 channel proteins. Real-time PCR was used to detect the mRNA expression of CIC-3. The results showed that SIN-1 reduced the neuronal survival rate, induced neuronal apoptosis, and promoted CIC-3 chloride channel protein and mRNA expression in the apoptotic neurons. DIDS reversed the effect of SIN-I. Our findings indicate that the increased activities of the CIC-3 chloride channel may be involved in hippocampal neuronal apoptosis induced by nitric oxide. 展开更多
关键词 neural regeneration brain injury nitric oxide CIC-3 chloride channel 3-morpholinosyndnomine 4 4'-diisothiocyanostilbene-2 2'-disulfonic acid hippocampal neurons apoptosis grants-supportedpaper NEUROREGENERATION
下载PDF
Chloride channel blocker 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid inhibits nitric oxide-induced apoptosis in cultured rat hippocampal neurons 被引量:2
3
作者 Jinbao Yin Lijuan Xu +5 位作者 Shuling Zhang Yuanyin Zheng zhichao zhong Hongling Fan XiLi Quanzhong Chang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第2期121-126,共6页
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic ... Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4- diisothiocyanatostilbene-2,2'-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor. 展开更多
关键词 neural regeneration brain injury chloride channel 3-morpholinosydnonimine hippocampus poly(adenosine diphosphate-ribose)polymerase-1 apoptosis inducing factor neuronal apoptosis grants-supported paper photographs-containing paper neuroregeneration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部