Nanoparticles of Fe-Co alloys and their oxides with the particle size below 20 nm were prepared by chemical vapor condensation process. The pure Ar, Ar+1%O2, Ar+3%O2 and Ar+6%O2 were used as carrier gases, with iron c...Nanoparticles of Fe-Co alloys and their oxides with the particle size below 20 nm were prepared by chemical vapor condensation process. The pure Ar, Ar+1%O2, Ar+3%O2 and Ar+6%O2 were used as carrier gases, with iron carbonyl and cobalt carbonyl as the precursors. XRD patterns showed that Fe-Co metallic nanoparticles were synthesized by using pure Ar as carrier gas, and only metal oxides were obtained using Ar+(>3)%O2 as carrier gas. The HRTEM images and TG-DTA curves were used to study the core-shell structure of the different nanoparticles. The nanoparticles obtained in pure Ar consist of black core and light shell with thickness of 2~4 nm. However, in the particles obtained in Ar+6%02, the oxides core with visible lattice fringes are surrounded by thin shell.展开更多
Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-...Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-troscopy and standard strain gauge techniques. The lattice parameter a of the MgCu2-type Laves compounds Sm0.9Pr0.1(Fe1-xCox)2 decreases nonlinearly with increasing Co concentration, deviating from the Vegard's law. Curie temperature Tc increases initially from 668 K for x=0 to 694 K for x=0.2 and then decreases to 200 K for x=1.0. The saturation magnetization Ms at temperatures 1.5 K, 77 K and 300 K have the same variation tendency as the composition dependence of Curie temperature, in consistence with rigid-band model. The easy magnetization direction (EMD) of Sm0.9Pr0.1(Fe1-xCox)2 lies along [111] direction in the range x<0.6, and changes to [110] for x=0.8, while Sm0.9Pr0.1Co2 stays in the paramagnetic state at room temperature. The composition dependence of the average hyperfine field,Hhf , demonstrates a similar variation tendency as that of the saturation magnetization Ms and Curie temperature Tc. The spontaneous magnetostricton Am increases with increasing Co content. The saturation magnetostriction λs decreases monotonically with increasing x, which is caused by the increase of magnetostriction constant λ100 with opposite sign to that of Am. A two-sublattice model has been proposed to understand the intermediate region between the [111] and [110] spin configurations, which can also be used to explain the temperature dependence of magnetization.展开更多
基金the National Natural Science Foundatlon of China under projects 59725103 ,50171070.
文摘Nanoparticles of Fe-Co alloys and their oxides with the particle size below 20 nm were prepared by chemical vapor condensation process. The pure Ar, Ar+1%O2, Ar+3%O2 and Ar+6%O2 were used as carrier gases, with iron carbonyl and cobalt carbonyl as the precursors. XRD patterns showed that Fe-Co metallic nanoparticles were synthesized by using pure Ar as carrier gas, and only metal oxides were obtained using Ar+(>3)%O2 as carrier gas. The HRTEM images and TG-DTA curves were used to study the core-shell structure of the different nanoparticles. The nanoparticles obtained in pure Ar consist of black core and light shell with thickness of 2~4 nm. However, in the particles obtained in Ar+6%02, the oxides core with visible lattice fringes are surrounded by thin shell.
基金This work has been supported by the projects No.59725103 and 59871054 of the National Natural Sciences Foundation of China and by the Science and Technology Commnission of Shenyang and Liaoning.Z.J.Guo as aiso indebted to Prof.A.S.Miarkosyan(Russia)for helpful discussions.
文摘Structure, magnetic properties and magnetostriction of Sm0.9Pr0.1(Fe1-xCox)2 compounds have been investigated by means of X-ray diffraction, a.c. initial susceptibility, extracting sample magnetometer, Mossbauer spec-troscopy and standard strain gauge techniques. The lattice parameter a of the MgCu2-type Laves compounds Sm0.9Pr0.1(Fe1-xCox)2 decreases nonlinearly with increasing Co concentration, deviating from the Vegard's law. Curie temperature Tc increases initially from 668 K for x=0 to 694 K for x=0.2 and then decreases to 200 K for x=1.0. The saturation magnetization Ms at temperatures 1.5 K, 77 K and 300 K have the same variation tendency as the composition dependence of Curie temperature, in consistence with rigid-band model. The easy magnetization direction (EMD) of Sm0.9Pr0.1(Fe1-xCox)2 lies along [111] direction in the range x<0.6, and changes to [110] for x=0.8, while Sm0.9Pr0.1Co2 stays in the paramagnetic state at room temperature. The composition dependence of the average hyperfine field,Hhf , demonstrates a similar variation tendency as that of the saturation magnetization Ms and Curie temperature Tc. The spontaneous magnetostricton Am increases with increasing Co content. The saturation magnetostriction λs decreases monotonically with increasing x, which is caused by the increase of magnetostriction constant λ100 with opposite sign to that of Am. A two-sublattice model has been proposed to understand the intermediate region between the [111] and [110] spin configurations, which can also be used to explain the temperature dependence of magnetization.