期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Panel Acoustic Contribution Analysis in Automotive Acoustics Using Discontinuous Isogeometric Boundary Element Method
1
作者 Yi Sun Chihua Lu +2 位作者 zhien liu Menglei Sun Hao Chen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第6期2307-2330,共24页
In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostl... In automotive industries,panel acoustic contribution analysis(PACA)is used to investigate the contributions of the body panels to the acoustic pressure at a certain point of interest.Currently,PACA is implementedmostly by either experiment-based methods or traditional numerical methods.However,these schemes are effort-consuming and inefficient in solving engineering problems,thereby restraining the further development of PACA in automotive acoustics.In this work,we propose a PACA scheme using discontinuous isogeometric boundary element method(IGABEM)to build an easily implementable and efficient method to identify the relative acoustic contributions of each automotive body panel.Discontinuous IGABEMis more accurate and converges faster than continuous BEM and IGABEM in the interior sound pressure evaluation of automotive compartments.In this work,a contribution ratio is defined to estimate the relative acoustic contribution of the structure panels;it can be calculated by reusing the coefficient matrix that has already been generated in the sound pressure evaluation process.The utilization of the parallel technique enables the proposed method to be more efficient than conventional methods;it is validated in two numerical examples,including a car passenger compartment subjected to realistic boundary conditions.A sound pressure response experiment based on a steel box is conducted to verify the accuracy of the interior sound pressure calculation using discontinuous IGABEM.This work is expected to promote the practical process of IGABEM for application in automotive acoustic problems. 展开更多
关键词 PACA IGABEM discontinuous element automotive acoustics
下载PDF
Status of an MWth integrated gasification fuel cell powergeneration system in China
2
作者 Chang Wei zhien liu +8 位作者 Chufu Li Surinder Singh Haoren Lu Yudong Gong Pingping Li Hanlin Wang Xia Yang Ming Xu Shujun Mu 《International Journal of Coal Science & Technology》 EI CAS CSCD 2021年第3期401-411,共11页
Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)sca... Abstract Here,we provide a status update of an integrated gasification fuel cell(IGFC)power-generation system being developed at the National Institute of Clean-and-Low-Carbon in China at the megawatt thermal(MWth)scale.This system is designed to use coal as fuel to produce syngas as a first step,similar to that employed for the integrated gasification combined cycle.Subsequently,the solid-oxide fuel-cell(SOFC)system is used to convert chemical energy to electricity directly through an electrochemical reaction without combustion.This system leads to higher efficiency as compared with that from a traditional coal-fired power plant.The unreacted fuel in the SOFC system is transported to an oxygencombustor to be converted to steam and carbon dioxide(CO_(2)).Through a heat-recovery system,the steam is condensed and removed,and CO_(2) is enriched and captured for sequestration or utilization.Comprehensive economic analyses for a typical IGFC system was performed and the results were compared with those for a supercritical pulverized coal-fired power plant.The SOFC stacks selected for IGFC development were tested and qualified under hydrogen and simulated coal syngas fuel.Experimental results using SOFC stacks and thermodynamic analyses indicated that the control of hydrogen/CO ratio of syngas and steam/CO ratio is important to avoid carbon deposition with the fuel pipe.A 20-kW SOFC unit is under development with design power output of 20 kW and DC efficiency of 50.41%.A 100 kW-level subsystem will consist of 6920-kW power-generation units,and the MWth IGFC system will consist of 59100 kWlevel subsystems. 展开更多
关键词 Integrated gasification fuel cell(IGFC) Solid oxide fuel cell Stack module Carbon dioxide capture Oxygen-combustor
下载PDF
Research on Measurement Method of Muffler Performance under High Temperature and High-Speed Airflow Conditions
3
作者 Liping Xie Chihua Lu +1 位作者 zhien liu Yawei Zhu 《Journal of Beijing Institute of Technology》 EI CAS 2020年第2期241-250,共10页
Ignoring the influence of flow velocity and flow temperature on muffling performance,performance tests were conducted without airflow in the development phase of the muffler which accounts to the difficulty of obtaini... Ignoring the influence of flow velocity and flow temperature on muffling performance,performance tests were conducted without airflow in the development phase of the muffler which accounts to the difficulty of obtaining a perfect match between the actual noise reduction effect and the design goal.Based on the two-load test theory,a set of high-temperature and high-speed airflow simulation measurement devices for the muffler has been built.In order to avoid the impact of high-temperature and high-speed airflow on the sensor,a high temperature resistant sensor holder has been designed for the test rig.The sound pressure has been measured in the pipe by using the lead-out measurement.In addition,a variable impedance load is placed at the end of the test tube to realize the switch between two different impedance loads by the wave handle of the variable impedance load.A sound source correction method is proposed to decrease the random fluctuation of the spectral characteristics of the output noise signal,which is caused by the acoustic impedance variation at the connection between the transition pipeline and the combined sound source system.Finally,an acoustic software has been used to calculate the transmission loss of the muffler in the presence of high temperature airflow.In comparing the experimental measurements and the simulation results,the small difference shows that:the bench not only can effectively simulate high-temperature and flow velocity environment of the engine but also accurately test the transmission loss of the muffler. 展开更多
关键词 MUFFLER lead-out measurement variable load source correction transmission loss
下载PDF
An Innovation of Evaluation and Design of Vehicle Acceleration Sound Based on EEG Signals
4
作者 Liping Xie XinYou Lin +2 位作者 Wan Chen zhien liu Yawei Zhu 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期344-361,共18页
There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals... There is a bottleneck in the design of vehicle sound that the subjective perception of sound quality that combines multiple psychological factors fails to be accurately and objectively quantified.Therefore,EEG signals are introduced in this paper to investigate the evaluation and design method of vehicle acceleration sound with powerful sound quality.Firstly,the experiment of EEG acquisition and subjective evaluation under the stimulation of powerful vehicle sounds is conducted,respectively,then three physiological EEG features of PSD_β,PSD_γand DE are constructed to evaluate the vehicle sounds based on the correlation analysis algorithms.Subsequently,the Adaptive Genetic Algorithm(AGA)is proposed to optimize the Elman model,where an intelligent model(AGA–Elman)is constructed to objectively predicate the perception of subjects for the vehicle sounds with powerful sound quality.The results demonstrate that the error of the constructed AGA–Elman model is only 2.88%,which outperforms than the traditional BP and Elman model;Finally,two vehicle acceleration sounds(Design1 and Design2)are designed based on the constructed AGA–Elman model from the perspective of order modulation and frequency modulation,which provide the acoustic theoretical guidance for the design of vehicle sound incorporating the EEG signals. 展开更多
关键词 EEG signal Brain activity analysis Vehicle sound design Adaptive genetic algorithm-Elman model
原文传递
Simplified Method of Simulating Double-Layer Micro-Perforated Panel Structure
5
作者 Wan Chen Chihua Lu +1 位作者 zhien liu Songze Du 《Automotive Innovation》 EI 2018年第4期374-380,共7页
The micro-perforated panel(MPP)structure has been widely used in various noise control applications,and thus its acoustic performance prediction has been receiving increasing attention.The acoustic performance of simp... The micro-perforated panel(MPP)structure has been widely used in various noise control applications,and thus its acoustic performance prediction has been receiving increasing attention.The acoustic performance of simple MPP structures,such as a MPPsound absorber,has been predicted using an analytical calculation method.However,this is not a suitable approach toward predicting the acoustic performance of complicated MPP structures,owing to the structural complexity of these structures.Moreover,the many perforations of submillimeter scale diameter render the MPP structures very difficult to analyze using numerical simulation.Thus,this study focused on two different simplified MPP simulation methods:the transfer admittance method and the equivalent fluid method,and their application on double-layer MPP structures.Based on the two simplified MPP simulation methods,the transmission loss value of the double-layer MPP mufflers with two sets of different structural parameters was calculated,respectively.The predicted results were compared with the impedance tube measurements.The results revealed that the two simplified MPP simulation methods could effectively predict the acoustic performance of doublelayer MPP structures.Moreover,the prediction based on the transfer admittance method can outperform the two simplified simulation methods. 展开更多
关键词 Double-layer MPP structure Acoustic simulation Transfer admittance Porous material Experimental test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部