期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Geochemical characteristics of cold-seep carbonates in Shenhu area,South China Sea 被引量:1
1
作者 Chongmin CHEN Lifeng ZHONG +3 位作者 zhifeng wan Chiyu CHENG Wei ZHOU Xing XU 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第3期969-985,共17页
Cold seeps spread worldwide along the continental margins,which are closely related to the exploration of gas hydrates.Cold-seep carbonates have been reported to record the nature of seepage,including fluid source,sed... Cold seeps spread worldwide along the continental margins,which are closely related to the exploration of gas hydrates.Cold-seep carbonates have been reported to record the nature of seepage,including fluid source,sedimentary environment,and variation of seepage activity.We investigated the morphology,mineralogy,element compositions,and carbon and oxygen isotopes of 15 cold-seep carbonates collected from the Shenhu area,and compared them with 2 carbonates from the Haima cold seep,the South China Sea(SCS),to promote our knowledge of cold-seep system in SCS.Most of the Shenhu carbonates exhibit crust morphology,and some are in the form of chimneys and blocks.Their absolute(20%–65%)and relative carbonate mineral contents(mainly aragonite and calcite,with minor samples containing dolomite)vary significantly,indicating the multi-stage methane leakage in our study area.Some samples show a slight negative Ce anomaly,suggesting either the mixing of seawater or variation of the redox condition during the precipitation;the cooccurrence of strongly enriched U and Mo demonstrates anoxic condition during precipitation.The mixed genetic methane source was interpreted by δ^(13)C of the Shenhu carbonates to range from-22.34‰to-59.30‰Vienna PeeDee Belemnite(VPDB),and the slight ^(18)O-enrichment imprinted on the carbonates suggests the possible influence from hydrate dissociation.The Haima carbonates,with biogenic methane as the main gas source,were presumably formed in a stronger fluid flux by compared with our Shenhu samples. 展开更多
关键词 cold-seep carbonates geochemistry sedimentary environment fluid source Haima cold seep Shenhu area South China Sea
下载PDF
Compositional and geochronological signatures of metamafic dykes from the Sangsang peridotites, South Tibet: Evidence for magma-starved forearc rifting during Neo-Tethyan subduction re-initiation 被引量:1
2
作者 Chi Xu Hao Zheng +2 位作者 Argyrios Kapsiotis Yang Xiao zhifeng wan 《Geoscience Frontiers》 SCIE CAS CSCD 2020年第6期2271-2286,共16页
In this study we present new mineral chemistry,whole-rock geochemical and zircon U-Pb geochronological data for 12 metamafic dykes in the mantle sequence of the Sangsang ophiolite in South Tibet(China).Modal analyses ... In this study we present new mineral chemistry,whole-rock geochemical and zircon U-Pb geochronological data for 12 metamafic dykes in the mantle sequence of the Sangsang ophiolite in South Tibet(China).Modal analyses of these dykes gave averages of^40%-65%plagioclase and^35%-60%amphibole and small amounts of(igneous)clinopyroxene,epidote and opaque minerals.This mineral assemblage resembles that of typical orthoamphibolites.Nevertheless,due to the absence of foliation the investigated rocks are described as metamafic lithologies.These rocks have primitive mantle(PM)-normalized multi-element patterns with negative Nb and Ta anomalies as well as weak,negative Ti anomalies.In addition,they have initial 87Sr/86Sr ratios[(87Sr/86Sr)1]of0.702844-0.703581,initial 143Nd/144Nd ratios[(143Nd/144Nd)i]of 0.512891-0.512959 and high εNd(t)values(+7.9 to+9.3).Uranium-Pb ages of magmatic zircons separated from the investigated metamafic dykes indicate that the parental melts of their protoliths intruded the Sangsang mantle at^119.0-118.5 Ma.The metamorphic mineral assemblages recognized in the investigated dykes are suggestive of a retrograde metamorphic process,from(epidote-)amphibolite facies(~470-610℃,-1.9-4.3 kbar)and to prehnitepumpellyite facies(≤280℃,<3 kbar),active within a rift-produced oceanic lithosphere.Microtextural and geochemical data suggest that the protoliths of the dykes were most likely massive gabbros.Compositional data show that the parental magmas of the gabbroic protoliths were generated by melting of a depleted mantle(DM)source that had been weakly modified by fluids emanating from a subducted oceanic lithospheric slab.The age of the gabbroic protoliths is slightly younger than the existing ages for ophiolites from the central Yarlung-Zangbo Suture Zone(YZSZ)in the literature(~129-123 Ma).We,therefore,suggest that the gabbroic protoliths of the Sangsang metamafic dykes were formed in an incipient forearc setting during Neo-Tethyan subduction reinitiation(Aptian).Our tectonomagmatic model provides insights into the igneous accretion and postsolidification evolution of the oceanic lithosphere in South Tibet. 展开更多
关键词 Zircon Dyke Ophiolite Sangsang Tibet NEO-TETHYS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部