We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be ...We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be locally peaked at the magnetic equator.Perpendicular fluxes of ions(<100 eV)increase simultaneously with the appearances of EMIC waves,indicating a heating of these ions by EMIC waves.In addition,the measured ion distributions also support the equatorial peak formation,which accords with the result of the frequency analyses.The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations,which are triggered by EMIC waves’perpendicular heating on low energy ions.展开更多
Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-freq...Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-frequency chorus emissions have not been well understood..In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f_(ce)(typical ordinary chorus) to 0.02 f_(ce)(extremely low-frequency chorus).Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N_e was found to be several times larger than has been associated with observations of ordinary chorus waves.For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates(calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f_(ce) when the background plasma density N_e increases.Especially when N_e reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 f_(ce) or even less, which is consistent with satellite observations.Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely lowfrequency chorus waves by controlling the wave growth rates.展开更多
In this paper, we present evolutions of the phase space density(PSD) spectra of ring current(RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD ...In this paper, we present evolutions of the phase space density(PSD) spectra of ring current(RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD spectra ratios from the initial phase to the main phase of the storm, we find that during the main phase, RC ions with low magnetic moment μ values can penetrate deeper into the magnetosphere than can those with high μ values, and that the μ range of PSD enhancement meets the relationship: S(O^+) >S(He^+)>S(H^+). Based on simultaneously observed ULF waves, theoretical calculation suggests that the radial transport of RC ions into the deep inner magnetosphere is caused by drift-bounce resonance interactions, and the efficiency of these resonance interactions satisfies the relationship: η(O^+) > η(He^+) > η(H^+), leading to the differences in μ range of PSD enhancement for different RC ions. In the recovery phase,the observed decay rates for different RC ions meet the relationship: R(O^+) > R(He^+) > R(H^+), in accordance with previous theoretical calculations, i.e., the charge exchange lifetime of O^+ is shorter than those of H^+ and He^+.展开更多
Kinetic Alfvén waves(KAWs),with a strong parallel disturbed electric field,play an important role in energy transport and particle acceleration in the magnetotail.On the basis of high-resolution observations of t...Kinetic Alfvén waves(KAWs),with a strong parallel disturbed electric field,play an important role in energy transport and particle acceleration in the magnetotail.On the basis of high-resolution observations of the Magnetospheric Multiscale(MMS)Mission,we present a detailed description of the acceleration process of electrons by KAWs in the plasma sheet boundary layer(PSBL).The MMS observed strong electromagnetic disturbances carrying a parallel disturbed electric field with an amplitude of up to 8 mV/m.The measured ratio of the electric to magnetic field perturbations was larger than the local Alfvén speed and was enhanced as the frequency increased,consistent with the theoretical predictions for KAWs.This evidence indicates that the electromagnetic disturbances should be identified as KAWs.During the KAWs,the energy flux of electrons at energies above 1 keV in the parallel and anti-parallel directions are significantly enhanced,implying occurrences of electron beams at higher energies.Additionally,the KAWs became more electrostaticlike and filled with high-frequency ion acoustic waves.The energy enhancement of electron beams is in accordance with the derived work done with the observed parallel disturbed electric field of KAWs,indicating electron acceleration caused by KAWs.Therefore,these results provide direct evidence of electron acceleration by KAWs embodying electrostatic ion acoustic waves in the PSBL.展开更多
Two consecutive magnetic flux ropes, separated by less than 30 s(Dt \ 30 s), are observed within one magnetic reconnection diffusion region without strong guide field in the Earth's magnetotail by Cluster multispa...Two consecutive magnetic flux ropes, separated by less than 30 s(Dt \ 30 s), are observed within one magnetic reconnection diffusion region without strong guide field in the Earth's magnetotail by Cluster multispacecraft. The flux ropes are characterized by bipolar signatures of the south–north magnetic field component Bz accompanied with strong core magnetic field By, intense current J and density depletions inside of them. In spite of the small but non-trivial global scale negative guide field(–By), there exists a directional change of the core fields of two flux ropes, i.e.,-Byfor the first one, and Byfor the second one. The directions of the core fields are the same as the ambient cross-tail magnetic field component(By) just outside of flux ropes. Therefore, we suggest that the core field of flux ropes is formed by compression of the local preexisting Byand that the directional change of core field is due to the change of local preexisting By. Such a change in ambient Bymight be caused by some microscale physics.展开更多
Chitosan-iron nanowires in porous anodic alumina (PAA) have been successfully prepared under ambient conditions as an ad- sorbent. The adsorbent was characterized by scanning electron microscopy, X-ray photoelectron...Chitosan-iron nanowires in porous anodic alumina (PAA) have been successfully prepared under ambient conditions as an ad- sorbent. The adsorbent was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and N2-BET surface area. The results showed that PAA can disperse and protect Fe0 nanorods from oxidation. The adsorption characteris- tics of trace Cr(VI) onto adsorbent have been examined at different initial Cr(VI) concentrations with pH 5. Batch adsorption studies show that the removal percentage of adsorbent for the removal of trace Cr(VI) is strongly dependent on the initial Cr(VI) concentrations. Langmuir and Freundlich isotherm models were used to analyze the experiment data. The adsorption of trace Cr(VI) by adsorbent is well modeled by the Langmuir isotherm and the maximum adsorption capacity of Cr(VI) is calcu- lated as 123.95 mg/g which is very closed to the experiment results. Intraparticle diffusion study shows that the intraparticle diffusion of adsorbent is not the sole rate-controlling step. The negative value of Gibbs free energy change,△G0, indicated that the process of Cr(VI) onto adsorbent was spontaneous. This work has demonstrated that chitosan-iron nanowires in porous anodic alumina as an adsorbent has promising potential for heavy metal removal at trace level.展开更多
基金the National Natural Science Foundation of China(41925018,41874194).
文摘We report a simultaneous observation of two band electromagnetic ion cyclotron(EMIC)waves and toroidal Alfvén waves by the Van Allen Probe mission.Through wave frequency analyses,the mass densityρis found to be locally peaked at the magnetic equator.Perpendicular fluxes of ions(<100 eV)increase simultaneously with the appearances of EMIC waves,indicating a heating of these ions by EMIC waves.In addition,the measured ion distributions also support the equatorial peak formation,which accords with the result of the frequency analyses.The formation of local mass density peaks at the equator should be due to enhancements of equatorial ion concentrations,which are triggered by EMIC waves’perpendicular heating on low energy ions.
基金supported by the National Natural Science Foundation of China (41874194, 41521063, 41374168)
文摘Low-frequency chorus emissions have recently attracted much attention due to the suggestion that they may play important roles in the dynamics of the Van Allen Belts.However, the mechanism(s) generating these low-frequency chorus emissions have not been well understood..In this letter, we report an interesting case in which background plasma density lowered the lower cutoff frequency of chorus emissions from above 0.1 f_(ce)(typical ordinary chorus) to 0.02 f_(ce)(extremely low-frequency chorus).Those extremely low-frequency chorus waves were observed in a rather dense plasma, where the number density N_e was found to be several times larger than has been associated with observations of ordinary chorus waves.For suprathermal electrons whose free energy is supplied by anisotropic temperatures, linear growth rates(calculated using in-situ plasma parameters measured by the Van Allen Probes) show that whistler mode instability can occur at frequencies below 0.1 f_(ce) when the background plasma density N_e increases.Especially when N_e reaches 90 cm–3 or more, the lowest unstable frequency can extend to 0.02 f_(ce) or even less, which is consistent with satellite observations.Therefore, our results demonstrate that a dense background plasma could play an essential role in the excitation of extremely lowfrequency chorus waves by controlling the wave growth rates.
基金supported by the National Natural Science Foundation of China (41925018, 41874194)
文摘In this paper, we present evolutions of the phase space density(PSD) spectra of ring current(RC) ions based on observations made by Van Allen Probe B during a geomagnetic storm on 23–24 August 2016. By analyzing PSD spectra ratios from the initial phase to the main phase of the storm, we find that during the main phase, RC ions with low magnetic moment μ values can penetrate deeper into the magnetosphere than can those with high μ values, and that the μ range of PSD enhancement meets the relationship: S(O^+) >S(He^+)>S(H^+). Based on simultaneously observed ULF waves, theoretical calculation suggests that the radial transport of RC ions into the deep inner magnetosphere is caused by drift-bounce resonance interactions, and the efficiency of these resonance interactions satisfies the relationship: η(O^+) > η(He^+) > η(H^+), leading to the differences in μ range of PSD enhancement for different RC ions. In the recovery phase,the observed decay rates for different RC ions meet the relationship: R(O^+) > R(He^+) > R(H^+), in accordance with previous theoretical calculations, i.e., the charge exchange lifetime of O^+ is shorter than those of H^+ and He^+.
基金supported by the National Natural Science Foundation of China(Grant Nos.41925018,41874194).
文摘Kinetic Alfvén waves(KAWs),with a strong parallel disturbed electric field,play an important role in energy transport and particle acceleration in the magnetotail.On the basis of high-resolution observations of the Magnetospheric Multiscale(MMS)Mission,we present a detailed description of the acceleration process of electrons by KAWs in the plasma sheet boundary layer(PSBL).The MMS observed strong electromagnetic disturbances carrying a parallel disturbed electric field with an amplitude of up to 8 mV/m.The measured ratio of the electric to magnetic field perturbations was larger than the local Alfvén speed and was enhanced as the frequency increased,consistent with the theoretical predictions for KAWs.This evidence indicates that the electromagnetic disturbances should be identified as KAWs.During the KAWs,the energy flux of electrons at energies above 1 keV in the parallel and anti-parallel directions are significantly enhanced,implying occurrences of electron beams at higher energies.Additionally,the KAWs became more electrostaticlike and filled with high-frequency ion acoustic waves.The energy enhancement of electron beams is in accordance with the derived work done with the observed parallel disturbed electric field of KAWs,indicating electron acceleration caused by KAWs.Therefore,these results provide direct evidence of electron acceleration by KAWs embodying electrostatic ion acoustic waves in the PSBL.
基金supported by the National Natural Science Foundation of China(41174140,41374168,and41174147)Research Fund for the Doctoral Program of Higher Education of China(20110141110043)+2 种基金Program for New Century Excellent Talents in University(NCET-13-0446)China Postdoctoral Science Foundation Funded Projectthe Fundamental Research Fund for the Central Universities(2042014kf0017,2012212020206,2012212020204)
文摘Two consecutive magnetic flux ropes, separated by less than 30 s(Dt \ 30 s), are observed within one magnetic reconnection diffusion region without strong guide field in the Earth's magnetotail by Cluster multispacecraft. The flux ropes are characterized by bipolar signatures of the south–north magnetic field component Bz accompanied with strong core magnetic field By, intense current J and density depletions inside of them. In spite of the small but non-trivial global scale negative guide field(–By), there exists a directional change of the core fields of two flux ropes, i.e.,-Byfor the first one, and Byfor the second one. The directions of the core fields are the same as the ambient cross-tail magnetic field component(By) just outside of flux ropes. Therefore, we suggest that the core field of flux ropes is formed by compression of the local preexisting Byand that the directional change of core field is due to the change of local preexisting By. Such a change in ambient Bymight be caused by some microscale physics.
基金supported by China Textile Industry Association Guide Science and Technology Project (2013039)the National Natural Science Foundation of China (51375351)
文摘Chitosan-iron nanowires in porous anodic alumina (PAA) have been successfully prepared under ambient conditions as an ad- sorbent. The adsorbent was characterized by scanning electron microscopy, X-ray photoelectron spectroscopy and N2-BET surface area. The results showed that PAA can disperse and protect Fe0 nanorods from oxidation. The adsorption characteris- tics of trace Cr(VI) onto adsorbent have been examined at different initial Cr(VI) concentrations with pH 5. Batch adsorption studies show that the removal percentage of adsorbent for the removal of trace Cr(VI) is strongly dependent on the initial Cr(VI) concentrations. Langmuir and Freundlich isotherm models were used to analyze the experiment data. The adsorption of trace Cr(VI) by adsorbent is well modeled by the Langmuir isotherm and the maximum adsorption capacity of Cr(VI) is calcu- lated as 123.95 mg/g which is very closed to the experiment results. Intraparticle diffusion study shows that the intraparticle diffusion of adsorbent is not the sole rate-controlling step. The negative value of Gibbs free energy change,△G0, indicated that the process of Cr(VI) onto adsorbent was spontaneous. This work has demonstrated that chitosan-iron nanowires in porous anodic alumina as an adsorbent has promising potential for heavy metal removal at trace level.