Colloidal core/shell quantum dots(QDs)with environment-friendly feature and controllable optoelectronic properties are promising building blocks in emerging solar technologies.In this work,we rationally design and tai...Colloidal core/shell quantum dots(QDs)with environment-friendly feature and controllable optoelectronic properties are promising building blocks in emerging solar technologies.In this work,we rationally design and tailor the eco-friendly CuInSe(CISe)/ZnSe core/shell QDs by Mn doping and stoichiometric optimization(i.e.,molar ratios of Cu/In).It is demonstrated that Mn doping in In-rich CISe/ZnSe core/shell QDs can effectively engineer the charge kinetics inside the QDs,enabling efficient photogenerated electrons transfer into the shell for retarded charge recombination.As a result,a solar-driven photoelectrochemical(PEC)device fabricated using the optimized Mn-doped In-rich CISe/ZnSe core/shell QDs(Cu/In ratio of 1/2)exhibits improved charge extraction and injection,showing a~3.5-fold higher photocurrent density than that of the pristine CISe/ZnSe core/shell QDs under 1 sun AM 1.5G illumination.The findings indicate that transition metal doping in“green”nonstoichiometric core/shell QDs may offer a new strategy for achieving high-efficiency solar energy conversion applications.展开更多
基金X.T.acknowledges the support from the National Key Research and Development Program of China(No.2019YFE0121600)the National Natural Science Foundation of China(Nos.22105031 and 62011530131)+2 种基金Sichuan Science and Technology Program(No.2021YFH0054)Innovation Group Project of Sichuan Province(No.20CXTD0090)Z.M.W.acknowledges the National Key Research and Development Program of China(No.2019YFB2203400)and the“111 Project”(No.B20030).
文摘Colloidal core/shell quantum dots(QDs)with environment-friendly feature and controllable optoelectronic properties are promising building blocks in emerging solar technologies.In this work,we rationally design and tailor the eco-friendly CuInSe(CISe)/ZnSe core/shell QDs by Mn doping and stoichiometric optimization(i.e.,molar ratios of Cu/In).It is demonstrated that Mn doping in In-rich CISe/ZnSe core/shell QDs can effectively engineer the charge kinetics inside the QDs,enabling efficient photogenerated electrons transfer into the shell for retarded charge recombination.As a result,a solar-driven photoelectrochemical(PEC)device fabricated using the optimized Mn-doped In-rich CISe/ZnSe core/shell QDs(Cu/In ratio of 1/2)exhibits improved charge extraction and injection,showing a~3.5-fold higher photocurrent density than that of the pristine CISe/ZnSe core/shell QDs under 1 sun AM 1.5G illumination.The findings indicate that transition metal doping in“green”nonstoichiometric core/shell QDs may offer a new strategy for achieving high-efficiency solar energy conversion applications.