期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Hybrid Gene Expression Programming-Based Sensor Data Correlation Mining
1
作者 Lechan Yang zhihao qin +1 位作者 Kun Wang Song Deng 《China Communications》 SCIE CSCD 2017年第1期34-49,共16页
This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality ... This paper deals with the reflectance estimation model issue to improve the estimation accuracy. We propose a model containing two core procedures: dimensionality reduction and model mining. First, the dimensionality reduction algorithm of hyperspectral data based on dependence degree(DRNDDD) is proposed to reduce the redundant hyperspectral band. DRND-DD solves the selection of suitable hyperspectral band via rough set theory. Furthermore, to improve the computation speed and accuracy of the model, based on DRND-DD, this paper proposes reflectance estimation model mining of leaf nitrogen concentration(LNC) for hyperspectral data by using hybrid gene expression programming(REMLNC-HGEP). Experimental results on three datasets demonstrate that the DRND-DD algorithm can obtain good results with a very short running time compared with principal component analysis(PCA), singular value decomposition(SVD), a dimensionality reduction algorithm based on the positive region(AR-PR) and a dimensionality reduction algorithm based on a discernable matrix(ARDM), and REMLNC-HGEP has low average time-consumption, high model mining success ratio and estimation accuracy. It was concluded that the REMLNC-HGEP performs better than the regression methods. 展开更多
关键词 reflectance estimation dimensionality reduction gene expression programming model mining
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部