Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde(HCHO)removal.Pt‐based catalysts are the optimal catalyst for HCHO decomposition at room temperature.Herein,flower‐l...Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde(HCHO)removal.Pt‐based catalysts are the optimal catalyst for HCHO decomposition at room temperature.Herein,flower‐like hierarchical Pt/NiAl‐LDHs catalysts with different[Ni2+]/[Al3+]molar ratios were synthesized via hydrothermal method followed by NaBH4 reduction of Pt precursor at room temperature.The flower‐like hierarchical Pt/NiAl‐LDHs were composed of interlaced nanoplates and metallic Pt nanoparticles(NPs)approximately 3–4 nm in diameter were loaded on the surface of the Pt/NiAl‐LDHs with high dispersion.The as‐prepared Pt/NiAl21 nanocomposite was highly efficient in catalyzing oxidation of HCHO into CO2 at room temperature.The high activity of the hierarchical Pt/NiAl21 nanocomposite was maintained after seven recycle tests,suggesting the high stability of the catalyst.Based on in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies,a reaction mechanism was put forward about HCHO decomposition at room temperature.This work provides new insights into designing and fabricating high‐performance catalysts for efficient indoor air purification.展开更多
Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,t...Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.展开更多
Porous cryptomelane-type octahedral molecular sieve(OMS-2)with mixed Mn valence and abundant lattice oxygen species has attracted much attention in volatile organic compounds(VOC)catalytic elimination.However,complete...Porous cryptomelane-type octahedral molecular sieve(OMS-2)with mixed Mn valence and abundant lattice oxygen species has attracted much attention in volatile organic compounds(VOC)catalytic elimination.However,complete conversion of arene over OMS-2 catalysts at relatively low temperature is still a challenge due to its limited crystal structure and inferior stability.Here,a series of PdCe/OMS-2 catalysts with different Pd/Ce molar ratios was fabricated by a facile impregnation method and the physicochemical properties of which were extensively characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HR-TEM),B runauer-Emmett-Teller(BET)method,X-ray fluorescence(XRF),X-ray photoelectron spectroscopy(XPS),temperature programmed reduction of H2(H2-TPR),Raman,In situ diffused reflectance infrared Fourier transform spectra(DRIFTS),and density functional theory(DFT)calculations.Results show that the total conversion of toluene can be achieved at 207℃ over PdCe2 with apparent activation energy as low as 62.6 kJ/mol.The strong synergistic effect between Pd and Ce remarkably boosts the catalytic activity of OMS-2,attributed to the abundant Mn^(3+)-O bands and active surface oxygen species.DFT results reveal that oxygen vacancy can be formed over PdCe2 much easily than that of Pd/OMS-2 and Ce/OMS-2 with the oxygen vacancy formation energy of2.42,2.83 and 2.68 eV,respectively.Simply increasing the Pd content cannot promote the catalytic activity although PdO is a critical active center in toluene oxidation.Oxygen vacancy attributed to the integrative effect of Pd,Ce and Mn species plays a promine nt role over prepared catalysts in toluene activation process.The findings reported in this work showed new insights into the designing of highly efficient OMS-2catalysts for VOC deep oxidation by tuning oxygen vacancy concentration.展开更多
Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as...Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as a support to immobilize the active Pt component(Pt/NiMoO4)for catalytic formaldehyde elimination at low ambient temperature(15℃).The results showed that the hydrothermal preparation temperature and time had a noticeable impact on the morphology and catalytic activity of the samples.The catalyst prepared with hydrothermal temperature of 150℃for 4 hr(Pt-150-4)exhibited superior catalytic activity and stability mainly due to its distinctly porous structure,relative abundance of adsorbed surface hydroxyls/water,and high oxidation ability,which resulted from the interaction of Pt with Ni and Mo of the bimetallic NiMoO4 support.Our results might shed light on the rational design of multifunctional catalysts for removal of indoor air pollutants at low ambient temperature.展开更多
The Late Paleozoic volcanic rocks are widespread in the Western Tianshan,and mainly consist of basalt,trachyte,trachy-andesite,andesite and rhyolite.However,the formation timing and tectonic implications of the volcan...The Late Paleozoic volcanic rocks are widespread in the Western Tianshan,and mainly consist of basalt,trachyte,trachy-andesite,andesite and rhyolite.However,the formation timing and tectonic implications of the volcanic rocks remain controversial.To obtain a comprehensive dataset with adequate spatial coverage,we collected the published zircon U-Pb age data of the Late Paleozoic volcanic rocks in the Western Tianshan,and mapped the temporal and spatial distribution of these volcanic rocks.Our compiled dataset indicates that the volcanic rocks in the Western Tianshan were formed in two major stages:Late Silurian-Early Carboniferous and Late Carboniferous-Middle Permian.The southward subduction of the Northern Tianshan Ocean formed a large number of Late Silurian-Early Carboniferous volcanic rocks.The flare-up of Late Carboniferous to Middle Permian magmatism in the NTOB was considered to be the response of the slab-roll back of the northern Tianshan Ocean.Therefore,arc magma assemblage and spatial-temporal distribution are of great significance to identify the dynamic mechanism transformation of subduction zone.展开更多
Exploring an alternative strategy with high efficiency and low cost to abate formaldehyde(HCHO)in indoor environment,is of increasing significance for people’s health.CeO_(2) catalysts prepared by hydrothermal,precip...Exploring an alternative strategy with high efficiency and low cost to abate formaldehyde(HCHO)in indoor environment,is of increasing significance for people’s health.CeO_(2) catalysts prepared by hydrothermal,precipitation and calcination methods were investigated for HCHO removal at ambient temperature.It is found that indoor fluorescent light visibly boosts the catalytic performance of CeO_(2) catalysts for HCHO decomposition at ambient temperature.Among the CeO_(2) catalysts,CeO_(2) prepared from hydrothermal method(CeO_(2)-H)exhibits a superior catalytic performance and an excellent durability by eight recycle times.Based on the characterization and analysis,the excellent catalytic performance of CeO_(2)-H is mainly contributed by its abundance of surface oxygen vacancies,and photogenerated electrons and hole activated by fluorescent light.This work shows a potential practicability in HCHO pollution elimination by taking full advantage of the existing lighting in indoor environments.展开更多
基金supported by the National Natural Science Foundation of China (21577046, 21307038)Wuhan Morning Light Plan of Youth Science and Technology (2017050304010327)the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University (JDGD-201813)~~
文摘Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde(HCHO)removal.Pt‐based catalysts are the optimal catalyst for HCHO decomposition at room temperature.Herein,flower‐like hierarchical Pt/NiAl‐LDHs catalysts with different[Ni2+]/[Al3+]molar ratios were synthesized via hydrothermal method followed by NaBH4 reduction of Pt precursor at room temperature.The flower‐like hierarchical Pt/NiAl‐LDHs were composed of interlaced nanoplates and metallic Pt nanoparticles(NPs)approximately 3–4 nm in diameter were loaded on the surface of the Pt/NiAl‐LDHs with high dispersion.The as‐prepared Pt/NiAl21 nanocomposite was highly efficient in catalyzing oxidation of HCHO into CO2 at room temperature.The high activity of the hierarchical Pt/NiAl21 nanocomposite was maintained after seven recycle tests,suggesting the high stability of the catalyst.Based on in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTS)studies,a reaction mechanism was put forward about HCHO decomposition at room temperature.This work provides new insights into designing and fabricating high‐performance catalysts for efficient indoor air purification.
基金National Natural Science Foundation of China(No.41701534)Open Fund of State Key Laboratory of Coal Resources and Safe Mining(No.SKLCRSM19KFA01)+1 种基金Ecological and Smart Mine Joint Foundation of Hebei Province(No.E2020402086)State Key Laboratory ofGeohazard Prevention and Geoenvironment Protection(No.SKLGP2019K015)
文摘Structure-from-Motion(SfM)techniques have been widely used for 3D geometry reconstruction from multi-view images.Nevertheless,the efficiency and quality of the reconstructed geometry depends on multiple factors,i.e.,the base-height ratio,intersection angle,overlap,and ground control points,etc.,which are rarely quantified in real-world applications.To answer this question,in this paper,we take a data-driven approach by analyzing hundreds of terrestrial stereo image configurations through a typical SfM algorithm.Two main meta-parameters with respect to base-height ratio and intersection angle are analyzed.Following the results,we propose a Skeletal Camera Network(SCN)and embed it into the SfM to lead to a novel SfM scheme called SCN-SfM,which limits tie-point matching to the remaining connected image pairs in SCN.The proposed method was applied in three terrestrial datasets.Experimental results have demonstrated the effectiveness of the proposed SCN-SfM to achieve 3D geometry with higher accuracy and fast time efficiency compared to the typical SfM method,whereas the completeness of the geometry is comparable.
基金Project supported by the National Natural Science Foundation of China(21876139,21922606,21407062)the Excellent Youth Foundation of Hubei Province of China(2019CFA078)+1 种基金Outstanding Youth Science and Technology Innovation Team Project for Colleges and Universities of Hubei Province(T2021036)the Hubei Provincial Natural Science Foundation of China(2019CFB578).
文摘Porous cryptomelane-type octahedral molecular sieve(OMS-2)with mixed Mn valence and abundant lattice oxygen species has attracted much attention in volatile organic compounds(VOC)catalytic elimination.However,complete conversion of arene over OMS-2 catalysts at relatively low temperature is still a challenge due to its limited crystal structure and inferior stability.Here,a series of PdCe/OMS-2 catalysts with different Pd/Ce molar ratios was fabricated by a facile impregnation method and the physicochemical properties of which were extensively characterized by X-ray diffraction(XRD),scanning electron microscopy(SEM),high-resolution transmission electron microscopy(HR-TEM),B runauer-Emmett-Teller(BET)method,X-ray fluorescence(XRF),X-ray photoelectron spectroscopy(XPS),temperature programmed reduction of H2(H2-TPR),Raman,In situ diffused reflectance infrared Fourier transform spectra(DRIFTS),and density functional theory(DFT)calculations.Results show that the total conversion of toluene can be achieved at 207℃ over PdCe2 with apparent activation energy as low as 62.6 kJ/mol.The strong synergistic effect between Pd and Ce remarkably boosts the catalytic activity of OMS-2,attributed to the abundant Mn^(3+)-O bands and active surface oxygen species.DFT results reveal that oxygen vacancy can be formed over PdCe2 much easily than that of Pd/OMS-2 and Ce/OMS-2 with the oxygen vacancy formation energy of2.42,2.83 and 2.68 eV,respectively.Simply increasing the Pd content cannot promote the catalytic activity although PdO is a critical active center in toluene oxidation.Oxygen vacancy attributed to the integrative effect of Pd,Ce and Mn species plays a promine nt role over prepared catalysts in toluene activation process.The findings reported in this work showed new insights into the designing of highly efficient OMS-2catalysts for VOC deep oxidation by tuning oxygen vacancy concentration.
基金supported by the National Natural Science Foundation of China(Nos.21577046 and 21871111)Wuhan Morning Light plan of Youth Science and Technology(No.2017050304010327)
文摘Efficient removal of formaldehyde from indoor environments is of significance for human health.In this work,a typical binary transition metal oxide that could provide various oxidation states,β-NiMoO4,was employed as a support to immobilize the active Pt component(Pt/NiMoO4)for catalytic formaldehyde elimination at low ambient temperature(15℃).The results showed that the hydrothermal preparation temperature and time had a noticeable impact on the morphology and catalytic activity of the samples.The catalyst prepared with hydrothermal temperature of 150℃for 4 hr(Pt-150-4)exhibited superior catalytic activity and stability mainly due to its distinctly porous structure,relative abundance of adsorbed surface hydroxyls/water,and high oxidation ability,which resulted from the interaction of Pt with Ni and Mo of the bimetallic NiMoO4 support.Our results might shed light on the rational design of multifunctional catalysts for removal of indoor air pollutants at low ambient temperature.
基金supported by the National Key Research and Development Project (No.2019YFA0708601)the National Natural Science Foundation of China (Nos.41573045,41873060,and 41830216)+1 种基金the China Geological Survey (No.DD20221649)the Fund from the Key Laboratory of Deep-Earth Dynamics of Ministry of Natural Resources (No.J1901-5)
文摘The Late Paleozoic volcanic rocks are widespread in the Western Tianshan,and mainly consist of basalt,trachyte,trachy-andesite,andesite and rhyolite.However,the formation timing and tectonic implications of the volcanic rocks remain controversial.To obtain a comprehensive dataset with adequate spatial coverage,we collected the published zircon U-Pb age data of the Late Paleozoic volcanic rocks in the Western Tianshan,and mapped the temporal and spatial distribution of these volcanic rocks.Our compiled dataset indicates that the volcanic rocks in the Western Tianshan were formed in two major stages:Late Silurian-Early Carboniferous and Late Carboniferous-Middle Permian.The southward subduction of the Northern Tianshan Ocean formed a large number of Late Silurian-Early Carboniferous volcanic rocks.The flare-up of Late Carboniferous to Middle Permian magmatism in the NTOB was considered to be the response of the slab-roll back of the northern Tianshan Ocean.Therefore,arc magma assemblage and spatial-temporal distribution are of great significance to identify the dynamic mechanism transformation of subduction zone.
基金Project supported by the National Natural Science Foundation of China(21871111,21577046)Excellent Youth Foundation of Hubei Province of China(2019CFA078)。
文摘Exploring an alternative strategy with high efficiency and low cost to abate formaldehyde(HCHO)in indoor environment,is of increasing significance for people’s health.CeO_(2) catalysts prepared by hydrothermal,precipitation and calcination methods were investigated for HCHO removal at ambient temperature.It is found that indoor fluorescent light visibly boosts the catalytic performance of CeO_(2) catalysts for HCHO decomposition at ambient temperature.Among the CeO_(2) catalysts,CeO_(2) prepared from hydrothermal method(CeO_(2)-H)exhibits a superior catalytic performance and an excellent durability by eight recycle times.Based on the characterization and analysis,the excellent catalytic performance of CeO_(2)-H is mainly contributed by its abundance of surface oxygen vacancies,and photogenerated electrons and hole activated by fluorescent light.This work shows a potential practicability in HCHO pollution elimination by taking full advantage of the existing lighting in indoor environments.