Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology,which are emerging technologies to ameliorate environmental problems.Spinel oxides are widely explor...Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology,which are emerging technologies to ameliorate environmental problems.Spinel oxides are widely explored in electrocatalytic oxidation reactions but have a poor intrinsic ability to reduction reactions,making their electrocatalytic ability less effective.To improve this,defect engineering is a valuable method for regulating the electronic structure and coordination environment.Herein,this manuscript discusses the use of defect spinel oxides in electrocatalytic reduction reactions,including the different types of defects,construction methods,and characterization techniques.It also outlines the various applications of defect spinel oxides in different electrocatalytic reduction reactions.Finally,it goes over the challenges and future outlooks for defect spinels.This review aims to thoroughly explain how defect spinels work in electrocatalytic reduction reactions and serve as a helpful guide for creating effective electrocatalysts.展开更多
Electrochemical reactions were widely used in energy storage and conversion devices. The development of low-cost, highly efficient and stable electrocatalyst is essential to a large-scale application of energy storage...Electrochemical reactions were widely used in energy storage and conversion devices. The development of low-cost, highly efficient and stable electrocatalyst is essential to a large-scale application of energy storage and conversion devices. Recently, emerging plasma technology has been employed as one of the practical ways to synthesize and modify electrocatalysts due to its unique property. In this review, we summarized the latest applications of plasma in energy storage and conversion, including using it as the preparation and modification technology of the various electrocatalysts and the usage of it as the synthesis technology directly. Firstly, we presented the definition and types of plasma reactors and their respective characteristics. Then, these applications of plasma technology in many essential electrode reactions including carbon dioxide reduction reaction(CO_2RR), nitrogen fixation, oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) were introduced.Finally, the challenges and outlook of plasma technology in energy storage and conversion were summarized, and the solutions and prospected its development in the future were present. Through reviewing the related aspects, readers can have a deeper understanding of the application prospects of plasma in electrocatalysis.展开更多
IrO_(2)exhibits good stability but limited electrocatalytic activity for oxygen evolution reaction in acid.Defect engineering is an effective strategy to improve the intrinsic ability of electrocatalysts by tailoring ...IrO_(2)exhibits good stability but limited electrocatalytic activity for oxygen evolution reaction in acid.Defect engineering is an effective strategy to improve the intrinsic ability of electrocatalysts by tailoring their electronic structure.Herein,we have successfully synthesized IrO_(2)/Ir heterophase with compressive strain and metal vacancies via a simple substitution-etching method.In virtue of the solubility of Cr in strong alkali,metal vacancies could be formed at surface after etching Cr-doped IrO_(2)/Ir in alkali,which leaded to modulated electronic structure.Meanwhile,the substitution of Cr with smaller atom radius would induce the formation of compressive strain and the relocated atoms made the d-band center shifted.With the regulated electronic structure and tuned d-band center,the obtained electrocatalyst only needed 285 mV to reach 10 mA·cm^(−2)in 0.1 M HClO4.Reaction kinetic has been rapidly accelerated as indicated by the smaller Tafel slope and charge transfer resistance.Theoretical calculations revealed that the d-band center and charge density distribution have been regulated with the introduction of defects in IrO_(2)/Ir,which significantly decreased the free energy barrier of rate determining step.This work provides a valuable reference to design effective and defects-rich electrocatalysts.展开更多
Direct formic acid fuel cell(DFAFC)has been considered as a promising energy conversion device for stationary and mobile applications.Advanced platinum(Pt)electrocatalysts for formic acid oxidation reaction(FAOR)are c...Direct formic acid fuel cell(DFAFC)has been considered as a promising energy conversion device for stationary and mobile applications.Advanced platinum(Pt)electrocatalysts for formic acid oxidation reaction(FAOR)are critical for DFAFC.However,the oxidation of formic acid on Pt catalysts often occurs via a dual pathway mechanism,which hinders the catalytic activity owing to the CO poisoning.Herein,we directly exfoliate bulk antimony to 2D antimonene(Sb)and in situ load Pt nanoparticles onto antimonene sheets with the assistance of ethylenediamine.According to the Bader charge analysis,the charge transfer from antimonene to Pt occurs,confirming the electronic interaction between Pt and Sb.Interestingly,antimonene,as a cocatalyst,alters the oxidation pathway for FAOR over Pt catalyst and makes FAOR follow the more efficient dehydrogenation pathway.The density functional theory(DFT)calculation demonstrates that antimonene can activate Pt to be a lower oxidative state and facilitate the oxidation of HCOOH into CO_(2) via a direct pathway,resulting in a weakened intermediate binding strength and better CO tolerance for FAOR.The specific activity of FAOR on Pt/Sb is 4.5 times,and the mass activity is 2.6 times higher than the conventional Pt/C.展开更多
Co_(3)O_(4) has been widely explored in electrocatalytic 5-hydroxymethyl-furfural(HMF) oxidation. However,the poor intrinsic ability has seriously limited its electrochemical ability. Heteroatom-doping is an efficient...Co_(3)O_(4) has been widely explored in electrocatalytic 5-hydroxymethyl-furfural(HMF) oxidation. However,the poor intrinsic ability has seriously limited its electrochemical ability. Heteroatom-doping is an efficient method to enhance the electrocatalytic ability of catalyst by regulating electronic structure. Herein,we have modulated the electronic structure of Co_(3)O_(4) by high valance Mo^(6+)-doping. With the introduction of Mo^(6+), the content of Co^(2+) was increased and metal-oxygen bond was strength. Electrochemical results suggested that the electrocatalytic ability of Co_(3)O_(4) towards HMF oxidation has been dramatically improved and reaction kinetics has been fasten. Theoretical calculations demonstrated that the surrounding cobalt sites after Mo^(6+)-doping with assembled electron has a strong adsorption ability towards HMF molecule leading to more favourable oxidation of HMF. Post characterizations demonstrated pristine Co_(3)O_(4) structure was kept after electrolysis cycles and CoOOH active species were formed. This work provides a valuable reference for developing efficient heteroatom-doped electrocatalysts for HMF oxidation.展开更多
Nickel sulfide exhibits excellent catalytic activity in the electrochemical 2,5-hydroxymethylfurfural oxidation reaction(HMFOR).However,due to the polydispersity of nanoparticles,it is difficult to establish a clear s...Nickel sulfide exhibits excellent catalytic activity in the electrochemical 2,5-hydroxymethylfurfural oxidation reaction(HMFOR).However,due to the polydispersity of nanoparticles,it is difficult to establish a clear structure-activity relationship at the atomic level.In this work,we have successfully synthesized atomically precise Ni_(6)(PET)_(12)and Ni_(4)(PET)_(8)clusters(PET:2-phenylethanethiol)for HMFOR.Ni^(2+)and S_(2)-with atomic ratio of 1:2 was mainly existed in Ni_(6)(PET)_(12)and Ni_(4)(PET)_(8)to form Ni-S bond.The electrochemical test results have suggested both Ni_(6)(PET)_(12)and Ni_(4)(PET)_(8)displayed outstanding electrocatalytic ability for HMFOR.The Ni_(6)(PET)_(12)exhibited better electrocatalytic ability than Ni_(4)(PET)_(8)with higher current density,lower overpotential and faster reaction kinetics.The superior electrochemical ability of Ni_(6)(PET)_(12)may be due to the enhanced adsorption towards HMF molecule with strong interaction towards hydroxyl group and furan ring.Moreover,it found that the Ni^(2+)species in Ni_(6)(PET)_(12)could rapidly oxidized into Ni^(3+)species,which could spontaneously capture electron and proton from HMF for oxidation.The theoretical calculation demonstrated that the Ni_(6)(PET)_(12)process lower free energy barrier than Ni_(4)(PET)_(8)to display excellent electrocatalytic performance.This work is of great significance for designing efficient electrocatalysts for HMFOR.展开更多
基金supported by the National Natural Science Foundation of China (22272047, 21905088, and 22102155)China Postdoctoral Science Foundation (2021M692909 and 2022T150587)the Provincial Natural Science Foundation of Hunan (2022JJ10006)。
基金supported by National Natural Science Foundation of China(Nos.22272047,21905088,22102155)the China Postdoctoral Science Foundation(Nos.2021M692909,2022T150587)the Provincial Natural Science Foundation of Hunan(No.2022JJ10006).
文摘Electrocatalytic reduction reactions play a crucial role in electrochemical energy conversion and storage technology,which are emerging technologies to ameliorate environmental problems.Spinel oxides are widely explored in electrocatalytic oxidation reactions but have a poor intrinsic ability to reduction reactions,making their electrocatalytic ability less effective.To improve this,defect engineering is a valuable method for regulating the electronic structure and coordination environment.Herein,this manuscript discusses the use of defect spinel oxides in electrocatalytic reduction reactions,including the different types of defects,construction methods,and characterization techniques.It also outlines the various applications of defect spinel oxides in different electrocatalytic reduction reactions.Finally,it goes over the challenges and future outlooks for defect spinels.This review aims to thoroughly explain how defect spinels work in electrocatalytic reduction reactions and serve as a helpful guide for creating effective electrocatalysts.
基金supported by the National Natural Science Foundation of China (Nos. 51402100 and 21573066)the Provincial Natural Science Foundation of Hunan (Nos. 2016JJ1006 and 2016TP1009)
文摘Electrochemical reactions were widely used in energy storage and conversion devices. The development of low-cost, highly efficient and stable electrocatalyst is essential to a large-scale application of energy storage and conversion devices. Recently, emerging plasma technology has been employed as one of the practical ways to synthesize and modify electrocatalysts due to its unique property. In this review, we summarized the latest applications of plasma in energy storage and conversion, including using it as the preparation and modification technology of the various electrocatalysts and the usage of it as the synthesis technology directly. Firstly, we presented the definition and types of plasma reactors and their respective characteristics. Then, these applications of plasma technology in many essential electrode reactions including carbon dioxide reduction reaction(CO_2RR), nitrogen fixation, oxygen reduction reaction(ORR), oxygen evolution reaction(OER) and hydrogen evolution reaction(HER) were introduced.Finally, the challenges and outlook of plasma technology in energy storage and conversion were summarized, and the solutions and prospected its development in the future were present. Through reviewing the related aspects, readers can have a deeper understanding of the application prospects of plasma in electrocatalysis.
基金This work was supported by the National Natural Science Foundation of China(Nos.92061201,21825106,and 22102155)the China Postdoctoral Science Foundation(Nos.2021M692909 and 2022T150587)+1 种基金the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province and Zhengzhou University(No.19IRSTHN022)the Key Scientific and Technological Project of Henan Province(No.2021102210027).
文摘IrO_(2)exhibits good stability but limited electrocatalytic activity for oxygen evolution reaction in acid.Defect engineering is an effective strategy to improve the intrinsic ability of electrocatalysts by tailoring their electronic structure.Herein,we have successfully synthesized IrO_(2)/Ir heterophase with compressive strain and metal vacancies via a simple substitution-etching method.In virtue of the solubility of Cr in strong alkali,metal vacancies could be formed at surface after etching Cr-doped IrO_(2)/Ir in alkali,which leaded to modulated electronic structure.Meanwhile,the substitution of Cr with smaller atom radius would induce the formation of compressive strain and the relocated atoms made the d-band center shifted.With the regulated electronic structure and tuned d-band center,the obtained electrocatalyst only needed 285 mV to reach 10 mA·cm^(−2)in 0.1 M HClO4.Reaction kinetic has been rapidly accelerated as indicated by the smaller Tafel slope and charge transfer resistance.Theoretical calculations revealed that the d-band center and charge density distribution have been regulated with the introduction of defects in IrO_(2)/Ir,which significantly decreased the free energy barrier of rate determining step.This work provides a valuable reference to design effective and defects-rich electrocatalysts.
基金The authors acknowledge the support received from the National Natural Science Foundation of China(Grant Nos.21573066 and 21825201)the Provincial Natural Science Foundation of Hunan(Grant Nos.2016JJ1006 and 2016TP1009).
文摘Direct formic acid fuel cell(DFAFC)has been considered as a promising energy conversion device for stationary and mobile applications.Advanced platinum(Pt)electrocatalysts for formic acid oxidation reaction(FAOR)are critical for DFAFC.However,the oxidation of formic acid on Pt catalysts often occurs via a dual pathway mechanism,which hinders the catalytic activity owing to the CO poisoning.Herein,we directly exfoliate bulk antimony to 2D antimonene(Sb)and in situ load Pt nanoparticles onto antimonene sheets with the assistance of ethylenediamine.According to the Bader charge analysis,the charge transfer from antimonene to Pt occurs,confirming the electronic interaction between Pt and Sb.Interestingly,antimonene,as a cocatalyst,alters the oxidation pathway for FAOR over Pt catalyst and makes FAOR follow the more efficient dehydrogenation pathway.The density functional theory(DFT)calculation demonstrates that antimonene can activate Pt to be a lower oxidative state and facilitate the oxidation of HCOOH into CO_(2) via a direct pathway,resulting in a weakened intermediate binding strength and better CO tolerance for FAOR.The specific activity of FAOR on Pt/Sb is 4.5 times,and the mass activity is 2.6 times higher than the conventional Pt/C.
基金supported by National Natural Science Foundation of China (Nos. 92061201, 21825106, 22102155 and 32072304)the China Postdoctoral Science Foundation (Nos. 2021M692909 and 2022T150587)+1 种基金the Program for Innovative Research Team (in Science and Technology) in Universities of Henan Province and Zhengzhou University (No. 19IRSTHN022)the Key Scientific and Technological Project of Henan Province (No. 2021102210027)。
文摘Co_(3)O_(4) has been widely explored in electrocatalytic 5-hydroxymethyl-furfural(HMF) oxidation. However,the poor intrinsic ability has seriously limited its electrochemical ability. Heteroatom-doping is an efficient method to enhance the electrocatalytic ability of catalyst by regulating electronic structure. Herein,we have modulated the electronic structure of Co_(3)O_(4) by high valance Mo^(6+)-doping. With the introduction of Mo^(6+), the content of Co^(2+) was increased and metal-oxygen bond was strength. Electrochemical results suggested that the electrocatalytic ability of Co_(3)O_(4) towards HMF oxidation has been dramatically improved and reaction kinetics has been fasten. Theoretical calculations demonstrated that the surrounding cobalt sites after Mo^(6+)-doping with assembled electron has a strong adsorption ability towards HMF molecule leading to more favourable oxidation of HMF. Post characterizations demonstrated pristine Co_(3)O_(4) structure was kept after electrolysis cycles and CoOOH active species were formed. This work provides a valuable reference for developing efficient heteroatom-doped electrocatalysts for HMF oxidation.
基金supported by the National Natural Science Foundation of China(92061201,21825106,22102155,and 32072304)China Postdoctoral Science Foundation(2021M692909 and 2022T150587)+1 种基金the Program for Innovative Research Team(in Science and Technology)in Universities of Henan Province and Zhengzhou University(19IRSTHN022)the Key Scientific and Technological Project of Henan Province(2021102210027)。
基金supported by National Natural Science Foundation of China(No.22102155)the China Postdoctoral Science Foundation(Nos.2021M692909 and 2022T150587).
文摘Nickel sulfide exhibits excellent catalytic activity in the electrochemical 2,5-hydroxymethylfurfural oxidation reaction(HMFOR).However,due to the polydispersity of nanoparticles,it is difficult to establish a clear structure-activity relationship at the atomic level.In this work,we have successfully synthesized atomically precise Ni_(6)(PET)_(12)and Ni_(4)(PET)_(8)clusters(PET:2-phenylethanethiol)for HMFOR.Ni^(2+)and S_(2)-with atomic ratio of 1:2 was mainly existed in Ni_(6)(PET)_(12)and Ni_(4)(PET)_(8)to form Ni-S bond.The electrochemical test results have suggested both Ni_(6)(PET)_(12)and Ni_(4)(PET)_(8)displayed outstanding electrocatalytic ability for HMFOR.The Ni_(6)(PET)_(12)exhibited better electrocatalytic ability than Ni_(4)(PET)_(8)with higher current density,lower overpotential and faster reaction kinetics.The superior electrochemical ability of Ni_(6)(PET)_(12)may be due to the enhanced adsorption towards HMF molecule with strong interaction towards hydroxyl group and furan ring.Moreover,it found that the Ni^(2+)species in Ni_(6)(PET)_(12)could rapidly oxidized into Ni^(3+)species,which could spontaneously capture electron and proton from HMF for oxidation.The theoretical calculation demonstrated that the Ni_(6)(PET)_(12)process lower free energy barrier than Ni_(4)(PET)_(8)to display excellent electrocatalytic performance.This work is of great significance for designing efficient electrocatalysts for HMFOR.