The dielectric effect is receiving increasing interest in the study of resistivity logging. Several recent findings have proven that the dielectric effect can cause negative imaginary signals on the array induction lo...The dielectric effect is receiving increasing interest in the study of resistivity logging. Several recent findings have proven that the dielectric effect can cause negative imaginary signals on the array induction logging. However, very few researches discuss the dielectric effect on the triaxial induction logging which is a novel technology in solving anisotropy problem. In this paper, we investigate the effect of large dielectric constants on a basic triaxial induction tool in a 1-D homogenous earth formation. The simulation model is derived from Maxwell equation and calculated by wave number integration. Sufficient simulations have been done. We performed an asymptotic analysis of the dielectric effect within the low-freq limit, yielding interesting observations on the dielectric effect with respect to frequency, spacing, and anisotropy. Those findings provide important and useful guidance for researchers to study on the dielectric effect on the triaxial induction logging.展开更多
Epilepsy is a common,chronic neurological disorder that has been associated with impaired neurodevelopment and immunity.The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism.Here,we first deter...Epilepsy is a common,chronic neurological disorder that has been associated with impaired neurodevelopment and immunity.The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism.Here,we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy.Subsequently,we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol-and kainic acid-induced seizures,whereas CXCR5 overexpression had the opposite effect.CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons.Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model,we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment.Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability,resulting in an increased number of seizures.Finally,our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism,namely,the disruption of neuronal polarity.展开更多
文摘The dielectric effect is receiving increasing interest in the study of resistivity logging. Several recent findings have proven that the dielectric effect can cause negative imaginary signals on the array induction logging. However, very few researches discuss the dielectric effect on the triaxial induction logging which is a novel technology in solving anisotropy problem. In this paper, we investigate the effect of large dielectric constants on a basic triaxial induction tool in a 1-D homogenous earth formation. The simulation model is derived from Maxwell equation and calculated by wave number integration. Sufficient simulations have been done. We performed an asymptotic analysis of the dielectric effect within the low-freq limit, yielding interesting observations on the dielectric effect with respect to frequency, spacing, and anisotropy. Those findings provide important and useful guidance for researchers to study on the dielectric effect on the triaxial induction logging.
基金supported by grants from the Science and Technology Program of Chongqing of China(cstc2018jcyjAX003)the National Natural Science Foundation of China(81901322 and 82271497).
文摘Epilepsy is a common,chronic neurological disorder that has been associated with impaired neurodevelopment and immunity.The chemokine receptor CXCR5 is involved in seizures via an unknown mechanism.Here,we first determined the expression pattern and distribution of the CXCR5 gene in the mouse brain during different stages of development and the brain tissue of patients with epilepsy.Subsequently,we found that the knockdown of CXCR5 increased the susceptibility of mice to pentylenetetrazol-and kainic acid-induced seizures,whereas CXCR5 overexpression had the opposite effect.CXCR5 knockdown in mouse embryos via viral vector electrotransfer negatively influenced the motility and multipolar-to-bipolar transition of migratory neurons.Using a human-derived induced an in vitro multipotential stem cell neurodevelopmental model,we determined that CXCR5 regulates neuronal migration and polarization by stabilizing the actin cytoskeleton during various stages of neurodevelopment.Electrophysiological experiments demonstrated that the knockdown of CXCR5 induced neuronal hyperexcitability,resulting in an increased number of seizures.Finally,our results suggested that CXCR5 deficiency triggers seizure-related electrical activity through a previously unknown mechanism,namely,the disruption of neuronal polarity.