Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSC...Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSCs have increased steadily in recent years,and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step.This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency,stability,perovskite-based tandem devices,and lead-free PSCs.Moreover,a brief discussion on the development of PSC modules and its challenges toward practical application is provided.展开更多
This study proposes a rational strategy for the design,fabrication and system integration of the humanoid intelligent display platform(HIDP)to meet the requirements of highly humanized mechanical properties and intell...This study proposes a rational strategy for the design,fabrication and system integration of the humanoid intelligent display platform(HIDP)to meet the requirements of highly humanized mechanical properties and intelligence for human-machine interfaces.The platform’s sandwich structure comprises a middle lightemitting layer and surface electrodes,which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer,respectively.Both materials are highly stretchable and resilient,endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations.Furthermore,by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation,the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things(IoT)and machine learning techniques.The accuracy of species identification reaches about 100%for 200 rounds of random testing.Additionally,the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics,displaying real-time results with an accuracy of approximately 99%and 93%,respectively.In sum,this study offers a rational route to designing intelligent display devices for audiovisual interaction,which can expedite the application of smart display devices in human-machine interaction,soft robotics,wearable sound-vision system and medical devices for hearing-impaired patients.展开更多
Tin perovskite solar cell received great attention in recent years owing to its optimum bandgap and heavy metal-free property.The main concern for the development of tin perovskite is the oxidation from Sn^(2+)to Sn^(...Tin perovskite solar cell received great attention in recent years owing to its optimum bandgap and heavy metal-free property.The main concern for the development of tin perovskite is the oxidation from Sn^(2+)to Sn^(4+).Herein,we report a surface hetero-protection strategy to avoid the surface reaction of tin perovskite.Three types of materials,including low-dimensional tin perovskite,alkali metal halide,and oxides of group IVA element,are exploited as protecting materials on tin perovskite surface with first-principles calculation.The lattice mismatch,oxidation resistance,and interface stability of these materials are investigated to search for ideal protecting-layer materials.After screening over 30 candidates,we finally obtain 8 suitable materials(SiO_(2),GeO_(2),KCl,Na Br,Cs F,Li F,Li I,CsSn_(2)Br_(5))for hetero-protection of tin perovskite.To further understand their application potential in a solar cell device,we then calculate the property of charge transfer between the interface of these materials and tin perovskite.Our study provides a guide for the experimental realization of efficient and stable tin perovskite solar cell.展开更多
Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are li...Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.展开更多
Metal halide perovskite solar cells(PSCs)stand out as one of the most promising contenders among photovoltaic technologies for the future.Over the past decade,PSCs with high power conversion efficiency(PCE)predominant...Metal halide perovskite solar cells(PSCs)stand out as one of the most promising contenders among photovoltaic technologies for the future.Over the past decade,PSCs with high power conversion efficiency(PCE)predominantly adopted the normal(ni-p)device structure.However,a common p-type organic small molecule,Spiro-OMe TAD,which is widely employed at the top layer of n-i-p devices[1],faces issues such as susceptibility to water absorption and poor thermal stability.展开更多
Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and device...Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed.展开更多
Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes(LEDs), photodetectors and la...Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes(LEDs), photodetectors and lasers as well. Rapid advances in bulk perovskite materials aroused universal interest for the development of perovskite nanocrystals, inspired by the great progress of classic colloidal semiconductor quantum dots. Perovskite nanocrystals have been synthesized based on solution process and exhibited high luminescence quantum yield, sharp emission peak, and emission color tunability. Significant progresses have been made about the application of perovskite nanocrystals for LED and lasers in recent years. In this paper, we will comprehensively introduce the synthesis strategies, physical and chemical characteristics, as well as their applications in optoelectronic devices.展开更多
With efficiency of perovskite solar cells(PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous ...With efficiency of perovskite solar cells(PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites,including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes are investigated. To compare the stability of PSCs and clarify the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs. In this review, we summarize the state-of-the-art progress on the improvement of device stability and discuss the directions for future research, hoping it provides an overview of the current status of the research on the stability of PSCs and guidelines for future research.展开更多
The development of photocatalysts that can effectively harvest visible light is essential for advances in high-efficiency solar-driven hydrogen generation. Herein, we synthesized water soluble CuInS2 (CIS) and Cu-In...The development of photocatalysts that can effectively harvest visible light is essential for advances in high-efficiency solar-driven hydrogen generation. Herein, we synthesized water soluble CuInS2 (CIS) and Cu-In-Zn-S (CIZS) quantum dots (QDs) by using one-pot aqueous method. The CIZS QDs are well passivated by glutathione ligands and are highly stable in aqueous conditions. We subsequently applied these QDs as a light harvesting material for photocatalytic hydrogen generation. Unlike most small band gap materials that show extremely low efficienc36 these new QDs display remarkable energy conversion efficiency in the visible and near-infrared regions. The external quantum efficiency at 650 nm is - 1.5%, which, to the best of our knowledge, is the highest value achieved until now in the near-infrared region.展开更多
Perovskite is rising as the most promising material for the next generation of solar cells,due to its high efficiency,low cost,and convenient fabrication.However,the stability of perovskite solar cells remains to be a...Perovskite is rising as the most promising material for the next generation of solar cells,due to its high efficiency,low cost,and convenient fabrication.However,the stability of perovskite solar cells remains to be a challenge towards large-scale application.Perovskite materials play a key role in improving the stability of PSCs,and tremendous efforts have been committed to stabilizing the perovskite materials,including composition regulation,crystallization control,and interface optimization.Herein we review the state-of-the-art strategies to improve the stability of perovskite layers in PSCs,and important strategies are highlighted.We analyze in-depth the influence of each site ion on perovskite structural stability and summarize the important progress of these structures showing superior stability.We then summarize the use of additives to regulate perovskite crystallization and defect passivation and elaborate the related mechanisms.Furthermore,the pros and cons of different interface treatment methods used in perovskite solar cells are discussed。展开更多
Light-emitting diodes(LEDs)are changing the energy and lighting industry due to their high power efficiencies,low energy consumption,and long operational lifetimes.While epitaxiallygrown LEDs are the current industry ...Light-emitting diodes(LEDs)are changing the energy and lighting industry due to their high power efficiencies,low energy consumption,and long operational lifetimes.While epitaxiallygrown LEDs are the current industry standard,their incompatibility with large-area displays and flexible substrates precludes their use in many applications.Solution-processed light-emitting materials are more versatile and can be easily coated onto a variety of substrates using modern deposition techniques such as vapor deposition,spin-coating,dip-coating,and spray-painting.With these advantages,organic light-emitting diodes(OLEDs)have been widely applied to TVs,cell phones,and semi-transparent displays.They,however,suffer from resolution-transparency trade-off and incompatibility with high-temperature processes.Quantum dot(QD)light-emitting diodes(QLEDs)have sharper emission features and higher stabilities.However,QD emitting layers also have low mobilities,and thus the devices require large voltages for operation due to the presence of surface organic ligands.展开更多
Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films bas...Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy(SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies(PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.展开更多
Narrow-bandgap tin-lead(Sn-Pb)mixed perovskite solar cells(PSCs)play a key role in constructing perovskite tandem solar cells that are potential to overpass Shockley-Queisser limit.A robust,chemically stable and lowte...Narrow-bandgap tin-lead(Sn-Pb)mixed perovskite solar cells(PSCs)play a key role in constructing perovskite tandem solar cells that are potential to overpass Shockley-Queisser limit.A robust,chemically stable and lowtemperature-processed hole transporting layer(HTL)is essential for building high-efficiency Sn-Pb solar cells and perovskite tandem solar cells.Here,we explore a roomtemperature-processed NiOx(L-NiOx)HTL based on nanocrystals(NCs)for Sn-Pb PSCs.In comparison with hightemperature-annealed NiOx(H-NiOx)film,the L-NiOx film shows deeper valence band and lower trap density,which increases the built-in potential and reduces carrier recombination,leading to a power conversion efficiency of 18.77%,the record for NiOx-based narrow-bandgap PSCs.Furthermore,the device maintains about 96%of its original efficiency after 50 days.This work provides a robust and room-temperatureprocessed HTL for highly efficient and stable narrow-bandgap PSCs.展开更多
Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices.However,judicious control of the grain growth for perovskite light emitting diodes is elusive due to ...Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices.However,judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology,composition,and defect.Herein,we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization.The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX_(3) perovskite,respectively.The formation of supramolecular structure retard perovskite nucleation,while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth.This judicious control enables a segmented growth,inducing the growth of insular nanocrystal consist of low-dimensional structure.Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%,ranking among the highest efficiency achieved.The homogeneous nano-island structure also enables high-efficiency large area(1 cm^(2))device up to 21.6%,and a record high value of 13.6%for highly semi-transparent ones.展开更多
Perovskite semiconductors are regarded as nextgeneration photovoltaic materials owing to their superb optoelectronic properties,including an excellent carrier diffusion length,strong light absorbption,low defect densi...Perovskite semiconductors are regarded as nextgeneration photovoltaic materials owing to their superb optoelectronic properties,including an excellent carrier diffusion length,strong light absorbption,low defect density,and solution processability.The PCE of lead perovskite solar cells(LPSC)rapidly increased from 3.8 to 25.5%in the past decade.However,the inclusion of soluble,toxic lead shadows its application due to environmental concerns.Furthermore,on the basis of the Shockley−Quisser(S−Q)limit,the efficiency of lead perovskite is limited to 32%since its band gap is>1.5 eV.To increase the efficiency of perovskite solar cells further,perovskite materials with a smaller band gap are required.Tin halide perovskite is currently the most promising alternative candidate that can address the above challenges due to its potentially less toxic character and electronic configuration analogous to that of lead.Its band gap(sub-1.4 eV)is lower than that of lead perovskite,approaching the ideal band gap with a theoretical efficiency of up to 33.4%based on the S−Q equation.However,tin perovskite is extremely easy to oxidize due to its unique electronic structure.Early works focus on the development of methods to reduce tin oxidation such as the addition of antioxidant additives or using low-dimensional structures.On the basis of these strategies,the reproducibility and efficiency of TPSCs have been significantly improved.In recent years,many works including composition engineering,functional additives,and device structure engineering have been used to improve the performance of TPSCs.On the basis of these strategies,the open-circuit voltage is improved to 0.94 V and the PCE certified by an independent laboratory is up to 12.4%.Meanwhile,the stability of TPSCs is significantly improved,and the stabilized power output time is up to 1000 h.Therefore,tin perovskite is emerging as a new generation of low-cost thin-film photovoltaic technology.This Account summarizes the properties of tin halide perovskites and the material and device engineering strategies toward more efficient and stable TPSCs.We highlight the unique properties of tin perovskites that distinguish them from lead perovskites,including their electronic structure,band structure,chemical properties,and so on.We discuss the critical challenges for the further development of TPSCs such as oxidation,high background carriers,uncontrollable crystallization,interface recombination,band alignment,and instability.In the end,we introduce potential directions for the future development of TPSCs including probing the formation mechanisms of tin perovskite,revealing the basic properties of Sn perovskite,overcoming the stability issue of TPSCs,and understanding TPSC device physics and structure engineering.展开更多
Single materials generating high-efficiency white light emission are of particular interest for lighting. Recently, metal halide perovskite is emerging as a promising candidate for white light emission materials. Howe...Single materials generating high-efficiency white light emission are of particular interest for lighting. Recently, metal halide perovskite is emerging as a promising candidate for white light emission materials. However, lead halide perovskites showing broad spectrum light emission generally present low luminescence quantum yield and the emission spectrum deviates from the standard white light color coordinate.展开更多
Sn-based perovskites are promising thin-film photovoltaic materials for their ideal bandgap and the eco-friendliness of Sn,but the performance of Sn-based perovskite solar cells is hindered by the short carrier diffus...Sn-based perovskites are promising thin-film photovoltaic materials for their ideal bandgap and the eco-friendliness of Sn,but the performance of Sn-based perovskite solar cells is hindered by the short carrier diffusion length and large defect density in nominally-synthesized Sn-based perovskite films.Herein we demonstrate that a long carrier diffusion length is achievable in quasi-2D Sn-based perovskite films consisting of high-member low-dimensional Ruddlesden-Popper(RP)phases with a preferred crystal orientation distribution.The key to the film synthesis is the use of a molecular additive formed by phenylethylammonium cations and optimally mixed halide-pseudohalide anions,which favorably tailors the quasi-2D Sn-based perovskite crystallization kinetics.The high-member RP film structure effectively enhances device short-circuit current density,giving rise to an increased power conversion efficiency(PCE)of 14.6%.The resulting device demonstrates a near-unity shelf stability upon1,000 h in nitrogen.A high reproductivity is also achieved with a count of 50 devices showing PCEs within a narrow range from minimum 13.0%to maximum 14.6%.展开更多
Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electron- transporting layer or hole-transporting layer (HTL...Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electron- transporting layer or hole-transporting layer (HTL) is critical to achieve high device efficiency. This strategy, however, requires tedious layer-by-layer fabrication as well as high-temperature annealing for certain oxides. In this work, we fabricated HTL-free planar FAPb0.5Sn0.5I3 PSCs with the highest efficiency of 7.94%. High short- circuit current density of 23.13 mA/cm2 was attained, indicating effective charge extraction at the ITO/ FAPb0.5Sn0.5I3 interface. This finding provides an alter- native strategy to simplify the manufacture of single- junction or tandem PSCs.展开更多
Organo-lead halide perovskites(OHPs) possess superior optoelectronic properties and have achieved an amazing certified power conversion efficiency(PCE) of 25.5% in perovskite solar cells(PSCs)[1]. Recent studies revea...Organo-lead halide perovskites(OHPs) possess superior optoelectronic properties and have achieved an amazing certified power conversion efficiency(PCE) of 25.5% in perovskite solar cells(PSCs)[1]. Recent studies revealed that the organic cations such as methylammonium(MA^(+)) and formamidinium(FA^(+)) and anions with weak electronegativity such as I^(-) in OHPs were causing instability.展开更多
Starburst triphenylamine molecules are generally used as hole transporting materials (HTMs)for optoelectronic devices like solar cells,light emitting diode and field effect transistors .The use of starburst triphenyla...Starburst triphenylamine molecules are generally used as hole transporting materials (HTMs)for optoelectronic devices like solar cells,light emitting diode and field effect transistors .The use of starburst triphenylamine molecules like spiro-OMeTAD HTM initiated the construction of solid state perovskite solar cells (PSCs).Currently,based on triphenylamine HTMs,the highest power conversion efficiency (PCE)of PSCs is up to 22.1%.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11834011 and 12074245)the support from the Energy Materials and Surface Sciences Unit of the Okinawa Institute of Science and Technology Graduate University。
文摘Perovskite solar cells(PSCs)emerging as a promising photovoltaic technology with high efficiency and low manufacturing cost have attracted the attention from all over the world.Both the efficiency and stability of PSCs have increased steadily in recent years,and the research on reducing lead leakage and developing eco-friendly lead-free perovskites pushes forward the commercialization of PSCs step by step.This review summarizes the main progress of PSCs in 2020 and 2021 from the aspects of efficiency,stability,perovskite-based tandem devices,and lead-free PSCs.Moreover,a brief discussion on the development of PSC modules and its challenges toward practical application is provided.
基金supported by the National Natural Science Foundation of China (Nos. 21935002, 51973116, 52003156)the starting grant of ShanghaiTech Universitythe Double First-Class Initiative Fund of ShanghaiTech University
文摘This study proposes a rational strategy for the design,fabrication and system integration of the humanoid intelligent display platform(HIDP)to meet the requirements of highly humanized mechanical properties and intelligence for human-machine interfaces.The platform’s sandwich structure comprises a middle lightemitting layer and surface electrodes,which consists of silicon elastomer embedded with phosphor and silk fibroin ionoelastomer,respectively.Both materials are highly stretchable and resilient,endowing the HIDP with skin-like mechanical properties and applicability in various extreme environments and complex mechanical stimulations.Furthermore,by establishing the numerical correlation between the amplitude change of animal sounds and the brightness variation,the HIDP realizes audiovisual interaction and successful identification of animal species with the aid of Internet of Things(IoT)and machine learning techniques.The accuracy of species identification reaches about 100%for 200 rounds of random testing.Additionally,the HIDP can recognize animal species and their corresponding frequencies by analyzing sound characteristics,displaying real-time results with an accuracy of approximately 99%and 93%,respectively.In sum,this study offers a rational route to designing intelligent display devices for audiovisual interaction,which can expedite the application of smart display devices in human-machine interaction,soft robotics,wearable sound-vision system and medical devices for hearing-impaired patients.
基金financial support from the National Key Research and Development Program of China(under Grants No.2016YFA0204000)Shanghai Tech start-up funding+5 种基金1000 young talent programNational Natural Science Foundation of China(U1632118,21571129)Shanghai key research program(16JC1402100)financial support from Shanghai Tech start-up fundingInnovation Program of Shanghai Municipal Education Commission with Grant No.15ZZ114National Natural Science Foundation of China with Grant No.11874265
文摘Tin perovskite solar cell received great attention in recent years owing to its optimum bandgap and heavy metal-free property.The main concern for the development of tin perovskite is the oxidation from Sn^(2+)to Sn^(4+).Herein,we report a surface hetero-protection strategy to avoid the surface reaction of tin perovskite.Three types of materials,including low-dimensional tin perovskite,alkali metal halide,and oxides of group IVA element,are exploited as protecting materials on tin perovskite surface with first-principles calculation.The lattice mismatch,oxidation resistance,and interface stability of these materials are investigated to search for ideal protecting-layer materials.After screening over 30 candidates,we finally obtain 8 suitable materials(SiO_(2),GeO_(2),KCl,Na Br,Cs F,Li F,Li I,CsSn_(2)Br_(5))for hetero-protection of tin perovskite.To further understand their application potential in a solar cell device,we then calculate the property of charge transfer between the interface of these materials and tin perovskite.Our study provides a guide for the experimental realization of efficient and stable tin perovskite solar cell.
基金supported by the National Natural Science Foundation of China(61935016,62275213 and 62205264),the National Natural Science Foundation of China(21961160720)the Fundamental Research Funds for Xi'an Jiaotong University(xzy012022092,xzd012022003 and xzy022022057)+1 种基金the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)。
文摘Perovskite solar cells(PSCs)have attracted aggressive attention in the photovoltaic field in light of the rapid increasing power conversion efficiency.However,their large-scale application and commercialization are limited by the toxicity issue of lead(Pb).Among all the lead-free perovskites,tin(Sn)-based perovskites have shown potential due to their low toxicity,ideal bandgap structure,high carrier mobility,and long hot carrier lifetime.Great progress of Sn-based PSCs has been realized in recent years,and the certified efficiency has now reached over 14%.Nevertheless,this record still falls far behind the theoretical calculations.This is likely due to the uncontrolled nucleation states and pronounced Sn(Ⅳ)vacancies.With insights into the methodologies resolving both issues,ligand engineering-assisted perovskite film fabrication dictates the state-of-the-art Sn-based PSCs.Herein,we summarize the role of ligand engineering during each state of film fabrication,ranging from the starting precursors to the ending fabricated bulks.The incorporation of ligands to suppress Sn~(2+)oxidation,passivate bulk defects,optimize crystal orientation,and improve stability is discussed,respectively.Finally,the remained challenges and perspectives toward advancing the performance of Sn-based PSCs are presented.We expect this review can draw a clear roadmap to facilitate Sn-based PSCs via ligand engineering.
文摘Metal halide perovskite solar cells(PSCs)stand out as one of the most promising contenders among photovoltaic technologies for the future.Over the past decade,PSCs with high power conversion efficiency(PCE)predominantly adopted the normal(ni-p)device structure.However,a common p-type organic small molecule,Spiro-OMe TAD,which is widely employed at the top layer of n-i-p devices[1],faces issues such as susceptibility to water absorption and poor thermal stability.
基金supported by the National Natural Science Foundation of China(21975264,21925112,21875122,61935016,92056119,61935016,21771008)Beijing Natural Science Foundation(2191003)+1 种基金the Youth Innovation Promotion Association Chinese Academy of Sciences,the National Key Research and Development Project funding from the Ministry of Science and Technology of China(2021YFB3800100,2021YFB3800101,2020YFB1506400)the Basic and Applied Basic Research Foundation of Guangdong Province(2019B1515120083)。
文摘Perovskite solar cells represent a promising third-generation photovoltaic technology with low fabrication cost and high power conversion efficiency.In light of the rapid development of perovskite materials and devices,a systematic survey on the latest advancements covering a broad range of related work is urgently needed.This review summarizes the recent major advances in the research of perovskite solar cells from a material science perspective.The discussed topics include the devices based on different type of perovskites(organic-inorganic hybrid,all-inorganic,and lead-free perovskite and perovskite quantum dots),the properties of perovskite defects,different type of charge transport materials(organic,polymeric,and inorganic hole transport materials and inorganic and organic electron transport materials),counter electrodes,and interfacial materials used to improve the efficiency and stability of devices.Most discussions focus on the key progresses reported within the recent five years.Meanwhile,the major issues limiting the production of perovskite solar cells and the prospects for the future development of related materials are discussed.
基金supported by the Start-up Funding from Shanghai Tech University,the Thousand Youth Talents Plan(21571129)Shanghai Key Research Program(16JC1402100)+5 种基金the National Natural Science Foundation of China(21571129,51572128,U1632118)the National Key Research Program(2016YFA0204000)Shanghai International Cooperation Project(16520720700)the National Natural Science Foundation of China-the Research Grants Council(NSFC-RGC)(5151101197)the National Key Basic Research Program of China(2014CB931702)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Halide perovskites have emerged as superstar materials for optoelectronic devices. Besides the fever of research in solar cells, these materials show great promise on light emitting diodes(LEDs), photodetectors and lasers as well. Rapid advances in bulk perovskite materials aroused universal interest for the development of perovskite nanocrystals, inspired by the great progress of classic colloidal semiconductor quantum dots. Perovskite nanocrystals have been synthesized based on solution process and exhibited high luminescence quantum yield, sharp emission peak, and emission color tunability. Significant progresses have been made about the application of perovskite nanocrystals for LED and lasers in recent years. In this paper, we will comprehensively introduce the synthesis strategies, physical and chemical characteristics, as well as their applications in optoelectronic devices.
基金supported by the the National Key Research and Development Program of China (2015AA034601, 2016YFA0204000)the National Natural Sciences Foundation of China (21571129, 21702069, 91733301, 91433203, 61474049, 51502141, 51761145042, 51627803, 91433205, 51421002, 11874402)+5 种基金ShanghaiTech Start-up Fundingthe Fundamental Research Funds for the Central Universitiesthe Program for HUST Academic Frontier Youth Teamthe Science and Technology Department of Hubei Province (2017AAA190)the Double first-class research funding of China-EU Institute for Clean and Renewable Energy (RP-2018-SOLAR-001, RP-2018-SOLAR-002)the International Partnership Program of Chinese Academy of Sciences (112111KYSB20170089)
文摘With efficiency of perovskite solar cells(PSCs) overpassing 23%, to realize their commercialization, the biggest challenge now is to boost the stability to the same level as conventional solar cells. Thus, tremendous effort has been directed over the past few years toward improving the stability of these cells. Various methods were used to improve the stability of bulk perovskites,including compositional engineering, interface adjustment, dimensional manipulation, crystal engineering, and grain boundary decoration. Diverse device configurations, carrier transporting layers, and counter electrodes are investigated. To compare the stability of PSCs and clarify the degradation mechanism, diverse characterization methods were developed. Overall stability of PSCs has become one central topic for the development of PSCs. In this review, we summarize the state-of-the-art progress on the improvement of device stability and discuss the directions for future research, hoping it provides an overview of the current status of the research on the stability of PSCs and guidelines for future research.
基金This work is supported by the start-up funding from ShanghaiTech University, the Young 1000 Talents Program, the National Natural Science Foundation of China (Nos. U1632118, 21571129, and 21571129), the National Basic Research Program of China (Nos. 2016YFA0204000 and 2013CB733700), Science and Technology Commission of Shanghai Municipality (Nos. 16JC1402100 and 16520720700) and the National Natural Science Foundation of China for Creative Research Groups (No. 21421004). We thank Dr. Yanyan Jia at the testing center at School of Physical Science and Technology, Protein center.
文摘The development of photocatalysts that can effectively harvest visible light is essential for advances in high-efficiency solar-driven hydrogen generation. Herein, we synthesized water soluble CuInS2 (CIS) and Cu-In-Zn-S (CIZS) quantum dots (QDs) by using one-pot aqueous method. The CIZS QDs are well passivated by glutathione ligands and are highly stable in aqueous conditions. We subsequently applied these QDs as a light harvesting material for photocatalytic hydrogen generation. Unlike most small band gap materials that show extremely low efficienc36 these new QDs display remarkable energy conversion efficiency in the visible and near-infrared regions. The external quantum efficiency at 650 nm is - 1.5%, which, to the best of our knowledge, is the highest value achieved until now in the near-infrared region.
基金supported by the National Key Research and Development Program of China (2021YFA0715502)the National Natural Science Foundation of China (61935016, 92056119, and 22175118)+1 种基金the Double First-Class Initiative Fund of Shanghai Tech Universitythe Science and Technology Commission of Shanghai Municipality (20XD1402500 and 20JC1415800)
文摘Perovskite is rising as the most promising material for the next generation of solar cells,due to its high efficiency,low cost,and convenient fabrication.However,the stability of perovskite solar cells remains to be a challenge towards large-scale application.Perovskite materials play a key role in improving the stability of PSCs,and tremendous efforts have been committed to stabilizing the perovskite materials,including composition regulation,crystallization control,and interface optimization.Herein we review the state-of-the-art strategies to improve the stability of perovskite layers in PSCs,and important strategies are highlighted.We analyze in-depth the influence of each site ion on perovskite structural stability and summarize the important progress of these structures showing superior stability.We then summarize the use of additives to regulate perovskite crystallization and defect passivation and elaborate the related mechanisms.Furthermore,the pros and cons of different interface treatment methods used in perovskite solar cells are discussed。
基金the National Natural Science Foundation of China(21905316)the Sun Yat-sen University.J.Tang thanks the financial support from the Major State Basic Research Development Program of China(2016YFB0700702)+2 种基金the National Natural Science Foundation of China(51761145048 and 61725401)L.Ding thanks the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032 and 21961160720)for the financial support.
文摘Light-emitting diodes(LEDs)are changing the energy and lighting industry due to their high power efficiencies,low energy consumption,and long operational lifetimes.While epitaxiallygrown LEDs are the current industry standard,their incompatibility with large-area displays and flexible substrates precludes their use in many applications.Solution-processed light-emitting materials are more versatile and can be easily coated onto a variety of substrates using modern deposition techniques such as vapor deposition,spin-coating,dip-coating,and spray-painting.With these advantages,organic light-emitting diodes(OLEDs)have been widely applied to TVs,cell phones,and semi-transparent displays.They,however,suffer from resolution-transparency trade-off and incompatibility with high-temperature processes.Quantum dot(QD)light-emitting diodes(QLEDs)have sharper emission features and higher stabilities.However,QD emitting layers also have low mobilities,and thus the devices require large voltages for operation due to the presence of surface organic ligands.
基金supported by the National Key Research and Development Program of China (2016YFA0204000)the National Natural Science Foundation of China (U1632118, 21571129)+2 种基金Shanghai Tech Start-Up Funding1000 Young Talent program,Science and Technology Commission of Shanghai Municipality (16JC1402100, 16520720700)
文摘Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy(SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies(PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.
基金the National Key Research and Development Program of China(2016YFA0204000)the National Natural Science Foundation of China(61935016,U1632118 and 21571129)+3 种基金start-up funding from ShanghaiTech Universitythe Center for High-resolution Electron Microscopy(C?EM)at ShanghaiTech University(EM02161943)Young 1000 Talents ProgramScience Fund for Creative Research Groups(21421004)。
文摘Narrow-bandgap tin-lead(Sn-Pb)mixed perovskite solar cells(PSCs)play a key role in constructing perovskite tandem solar cells that are potential to overpass Shockley-Queisser limit.A robust,chemically stable and lowtemperature-processed hole transporting layer(HTL)is essential for building high-efficiency Sn-Pb solar cells and perovskite tandem solar cells.Here,we explore a roomtemperature-processed NiOx(L-NiOx)HTL based on nanocrystals(NCs)for Sn-Pb PSCs.In comparison with hightemperature-annealed NiOx(H-NiOx)film,the L-NiOx film shows deeper valence band and lower trap density,which increases the built-in potential and reduces carrier recombination,leading to a power conversion efficiency of 18.77%,the record for NiOx-based narrow-bandgap PSCs.Furthermore,the device maintains about 96%of its original efficiency after 50 days.This work provides a robust and room-temperatureprocessed HTL for highly efficient and stable narrow-bandgap PSCs.
基金The authors gratefully acknowledge financial support from the National Natural Science Foundation of China(Nos.61935016,92056119,22175118,62288102,62274135)National Key Research and Development Program of China(under Grants No.2021YFA0715502)+2 种基金Double First-Class Initiative Fund of ShanghaiTech University,and the Science and Technology Commission of Shanghai Municipality(Nos.20XD1402500 and 20JC1415800)Bertil och Britt Svenssons Stiftelse and Swedish Energy Agency(P2022-00394)The authors appreciate the Instrument Analysis Center and Centre for High-resolution Electron Microscopy(CħEM)and the high-performance computing(HPC)Platform of ShanghaiTech University.The authors gratefully thank professor John A.McGuire for the helpful discussion.
文摘Regulation of perovskite growth plays a critical role in the development of high-performance optoelectronic devices.However,judicious control of the grain growth for perovskite light emitting diodes is elusive due to its multiple requirements in terms of morphology,composition,and defect.Herein,we demonstrate a supramolecular dynamic coordination strategy to regulate perovskite crystallization.The combined use of crown ether and sodium trifluoroacetate can coordinate with A site and B site cations in ABX_(3) perovskite,respectively.The formation of supramolecular structure retard perovskite nucleation,while the transformation of supramolecular intermediate structure enables the release of components for slow perovskite growth.This judicious control enables a segmented growth,inducing the growth of insular nanocrystal consist of low-dimensional structure.Light emitting diode based on this perovskite film eventually brings a peak external quantum efficiency up to 23.9%,ranking among the highest efficiency achieved.The homogeneous nano-island structure also enables high-efficiency large area(1 cm^(2))device up to 21.6%,and a record high value of 13.6%for highly semi-transparent ones.
基金support from the National Key Research and Development Program of China(2016YFA0204000)ShanghaiTech start-up funding,the 1000 young talent program,the National Natural Science Foundation of China(61935016,92056119)the Shanghai Science and Technology Commission(20XD1402500,20JC1415800).
文摘Perovskite semiconductors are regarded as nextgeneration photovoltaic materials owing to their superb optoelectronic properties,including an excellent carrier diffusion length,strong light absorbption,low defect density,and solution processability.The PCE of lead perovskite solar cells(LPSC)rapidly increased from 3.8 to 25.5%in the past decade.However,the inclusion of soluble,toxic lead shadows its application due to environmental concerns.Furthermore,on the basis of the Shockley−Quisser(S−Q)limit,the efficiency of lead perovskite is limited to 32%since its band gap is>1.5 eV.To increase the efficiency of perovskite solar cells further,perovskite materials with a smaller band gap are required.Tin halide perovskite is currently the most promising alternative candidate that can address the above challenges due to its potentially less toxic character and electronic configuration analogous to that of lead.Its band gap(sub-1.4 eV)is lower than that of lead perovskite,approaching the ideal band gap with a theoretical efficiency of up to 33.4%based on the S−Q equation.However,tin perovskite is extremely easy to oxidize due to its unique electronic structure.Early works focus on the development of methods to reduce tin oxidation such as the addition of antioxidant additives or using low-dimensional structures.On the basis of these strategies,the reproducibility and efficiency of TPSCs have been significantly improved.In recent years,many works including composition engineering,functional additives,and device structure engineering have been used to improve the performance of TPSCs.On the basis of these strategies,the open-circuit voltage is improved to 0.94 V and the PCE certified by an independent laboratory is up to 12.4%.Meanwhile,the stability of TPSCs is significantly improved,and the stabilized power output time is up to 1000 h.Therefore,tin perovskite is emerging as a new generation of low-cost thin-film photovoltaic technology.This Account summarizes the properties of tin halide perovskites and the material and device engineering strategies toward more efficient and stable TPSCs.We highlight the unique properties of tin perovskites that distinguish them from lead perovskites,including their electronic structure,band structure,chemical properties,and so on.We discuss the critical challenges for the further development of TPSCs such as oxidation,high background carriers,uncontrollable crystallization,interface recombination,band alignment,and instability.In the end,we introduce potential directions for the future development of TPSCs including probing the formation mechanisms of tin perovskite,revealing the basic properties of Sn perovskite,overcoming the stability issue of TPSCs,and understanding TPSC device physics and structure engineering.
文摘Single materials generating high-efficiency white light emission are of particular interest for lighting. Recently, metal halide perovskite is emerging as a promising candidate for white light emission materials. However, lead halide perovskites showing broad spectrum light emission generally present low luminescence quantum yield and the emission spectrum deviates from the standard white light color coordinate.
基金financially supported from the National Key Research and Development Program of China(2021YFA0715502)the National Natural Science Foundation of China(61935016,92056119,22175118)+9 种基金the Science and Technology Commission of Shanghai Municipality(20XD1402500,20JC1415800)Shanghai Tech start-up fundingthe Early Career Scheme(22300221)from the Hong Kong Research Grant Councilthe Excellent Young Scientists Funds(52222318)from National Natural Science Foundation of Chinathe start-up grants,the Initiation Grant-Faculty Niche Research Areas(IG-FNRA)2020/21the Interdisciplinary Research Matching Scheme(IRMS)2020/21 of Hong Kong Baptist Universitysupport from the Hong Kong Research Grant Council(16302520)Seed Funding from the University Research Committee(URC)of the University of Hong Kongpartially supported by the Centre for High-Resolution Electron Microscopy(ChEM),SPST,Shanghai Tech University under contract No.EM02161943the Analytical Instrumentation Center,SPST,Shanghai Tech University under contract No.SPST-AIC10112914。
文摘Sn-based perovskites are promising thin-film photovoltaic materials for their ideal bandgap and the eco-friendliness of Sn,but the performance of Sn-based perovskite solar cells is hindered by the short carrier diffusion length and large defect density in nominally-synthesized Sn-based perovskite films.Herein we demonstrate that a long carrier diffusion length is achievable in quasi-2D Sn-based perovskite films consisting of high-member low-dimensional Ruddlesden-Popper(RP)phases with a preferred crystal orientation distribution.The key to the film synthesis is the use of a molecular additive formed by phenylethylammonium cations and optimally mixed halide-pseudohalide anions,which favorably tailors the quasi-2D Sn-based perovskite crystallization kinetics.The high-member RP film structure effectively enhances device short-circuit current density,giving rise to an increased power conversion efficiency(PCE)of 14.6%.The resulting device demonstrates a near-unity shelf stability upon1,000 h in nitrogen.A high reproductivity is also achieved with a count of 50 devices showing PCEs within a narrow range from minimum 13.0%to maximum 14.6%.
基金This work was supported by start-up funding from ShanghaiTech University, The Young 1000 Talents Program, the National Natural Science Foundation of China (Grant Nos. U 1632118, and 21571129), the National Key Research Program (No. 2016YFA0204000), the Shanghai Key Research Program (No. 16JC1402100), and the Shanghai International Cooperation Project (No. 16520720700). The authors are grateful to the test centers of both ShanghaiTech University and CAS Key Laboratory of Low- Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences.
文摘Mixed lead-tin (Pb-Sn) perovskites present a promising strategy to extend the light-harvesting range of perovskite-based solar cells (PSCs). The use of electron- transporting layer or hole-transporting layer (HTL) is critical to achieve high device efficiency. This strategy, however, requires tedious layer-by-layer fabrication as well as high-temperature annealing for certain oxides. In this work, we fabricated HTL-free planar FAPb0.5Sn0.5I3 PSCs with the highest efficiency of 7.94%. High short- circuit current density of 23.13 mA/cm2 was attained, indicating effective charge extraction at the ITO/ FAPb0.5Sn0.5I3 interface. This finding provides an alter- native strategy to simplify the manufacture of single- junction or tandem PSCs.
文摘Organo-lead halide perovskites(OHPs) possess superior optoelectronic properties and have achieved an amazing certified power conversion efficiency(PCE) of 25.5% in perovskite solar cells(PSCs)[1]. Recent studies revealed that the organic cations such as methylammonium(MA^(+)) and formamidinium(FA^(+)) and anions with weak electronegativity such as I^(-) in OHPs were causing instability.
文摘Starburst triphenylamine molecules are generally used as hole transporting materials (HTMs)for optoelectronic devices like solar cells,light emitting diode and field effect transistors .The use of starburst triphenylamine molecules like spiro-OMeTAD HTM initiated the construction of solid state perovskite solar cells (PSCs).Currently,based on triphenylamine HTMs,the highest power conversion efficiency (PCE)of PSCs is up to 22.1%.