The optical frequency comb based on microresonators(microcombs)is an integrated coherent light source and has the potential to promise a high-precision frequency standard;self-reference and a long-term stable microcom...The optical frequency comb based on microresonators(microcombs)is an integrated coherent light source and has the potential to promise a high-precision frequency standard;self-reference and a long-term stable microcomb are the keys to this realization.Here,we demonstrated a 0.7-octave spectrum Kerr comb via dispersion engineering in a thin-film lithium niobate microresonator,and the single-soliton state can be accessed passively with long-term stability over 3 h.With such a robust broadband coherent comb source using thin-film lithium niobate,a fully stabilized microcomb can be expected for massive practical applications.展开更多
Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailabl...Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailable.To achieve FSO on demand,portable FSO devices are essential for flexible and fast deployment,where the key is achieving compact structure and plug-and-play operation.Here,we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link,using commercial single-mode-fibercoupled optical transceiver modules without optical amplification.Fully automatic four-stage acquisition,pointing,and tracking systems are developed,which control the tracking error within 3μrad,resulting in an average link loss of 13.7 dB.It is the key for removing optical amplification;hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way.Each FSO device is within an overall size of 45 cm×40 cm×35 cm,and 9.5 kg weight,with power consumption of∼10 W.The optical link up to 4 km is tested with average loss of 18 dB,limited by the foggy test environment.With better weather conditions and optical amplification,longer FSO can be expected.Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.展开更多
基金This work was supported by the National Key R&D Program of China(Nos.2022YFA1205100,2023YFB2805700,and 2019YFA0705000)the National Natural Science Foundation of China(Nos.62293523 and 12304421)+4 种基金the Leading-edge Technology Program of Jiangsu Natural Science Foundation(No.BK20192001)the Zhangjiang Laboratory(No.ZJSP21A001)the Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)the Jiangsu Natural Science Foundation(No.BK20230770)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘The optical frequency comb based on microresonators(microcombs)is an integrated coherent light source and has the potential to promise a high-precision frequency standard;self-reference and a long-term stable microcomb are the keys to this realization.Here,we demonstrated a 0.7-octave spectrum Kerr comb via dispersion engineering in a thin-film lithium niobate microresonator,and the single-soliton state can be accessed passively with long-term stability over 3 h.With such a robust broadband coherent comb source using thin-film lithium niobate,a fully stabilized microcomb can be expected for massive practical applications.
基金supported by the National Key R&D Program of China(Grant No.2019YFA0705000)the Leading-Edge Technology Program of Jiangsu Natural Science Foundation(Grant No.BK20192001)+6 种基金the National Natural Science Foundation of China(Grant Nos.51890861,11690033,and 62293523)the Zhangjiang Laboratory(Grant No.ZJSP21A001)the Key R&D Program of Guangdong Province(Grant No.2018B030329001)the National Postdoctoral Program for Innovative Talents(Grant No.BX2021122)the China Postdoctoral Science Foundation(Grant No.2022M711570)the Fundamental Research Funds for the Central Universities(Grant No.2022300158)the Jiangsu Funding Program for Excellent Postdoctoral Talent.
文摘Free-space optical communication(FSO)can achieve fast,secure,and license-free communication without physical cables,providing a cost-effective,energy-efficient,and flexible solution when fiber connection is unavailable.To achieve FSO on demand,portable FSO devices are essential for flexible and fast deployment,where the key is achieving compact structure and plug-and-play operation.Here,we develop a miniaturized FSO system and realize 9.16 Gbps FSO in a 1 km link,using commercial single-mode-fibercoupled optical transceiver modules without optical amplification.Fully automatic four-stage acquisition,pointing,and tracking systems are developed,which control the tracking error within 3μrad,resulting in an average link loss of 13.7 dB.It is the key for removing optical amplification;hence FSO is achieved with direct use of commercial transceiver modules in a bidirectional way.Each FSO device is within an overall size of 45 cm×40 cm×35 cm,and 9.5 kg weight,with power consumption of∼10 W.The optical link up to 4 km is tested with average loss of 18 dB,limited by the foggy test environment.With better weather conditions and optical amplification,longer FSO can be expected.Such a portable and automatic FSO system will produce massive applications of field-deployable high-speed wireless communication in the future.