[Objectives]To observe the effect of Guanxin-V Mixture combined with Sacubitril Valsartan on cardiac function in patients after PCI for acute ST-segment elevation myocardial infarction(STE-MI).[Methods]41 cases of STE...[Objectives]To observe the effect of Guanxin-V Mixture combined with Sacubitril Valsartan on cardiac function in patients after PCI for acute ST-segment elevation myocardial infarction(STE-MI).[Methods]41 cases of STEMI patients(qi and yin deficiency and blood stasis and obstruction)hospitalized in Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine from January 2020 to June 2021 were randomly divided into 21 cases in the treatment group and 20 cases in the control group,and the two groups were given standardized Western medicine treatment as soon as possible after PCI.The control group was treated with Sacubitril Valsartan,and the treatment group was treated with Guanxin-V Mixture on the basis of treatment in the control group.The patients in the two groups were treated for 3 months,and the TCM syndrome score,left ventricular ejection fraction(LVEF),and N-Terminal Pro-Brain Natriuretic Peptide(NT-proBNP),interleukin-6(IL-6),and high-sensitivity C-reactive protein(hs-CRP)levels,and the incidence of heart failure and adverse reactions in the two groups after treatment were recorded.[Results]After the treatment,the TCM syndrome score and serum NT-proBNP,IL-6 and hs-CRP levels of the two groups significantly decreased(P<0.05),and the levels of the treatment group were significantly lower than those of the control group(P<0.05);the LVEF of the two groups significantly increased(P<0.05),and the level of the treatment group was significantly higher than that of the control group(P<0.05).Comparison of the incidence of heart failure and adverse reactions in the two groups showed no statistically significant differences(P>0.05).[Conclusions]Guanxin-V Mixture combined with Sacubitril Valsartan could significantly improve cardiac function in STEMI patients undergoing PCI,and its effect may be related to the suppression of inflammatory response.展开更多
In this work,microwave treatment was introduced to a hydrothermal treatment process to degrade PCDD/Fs(Polychlorinated dibenzo-p-dioxins and dibenzofurans)in municipal solid waste incineration(MSWI)fly ash.Three proce...In this work,microwave treatment was introduced to a hydrothermal treatment process to degrade PCDD/Fs(Polychlorinated dibenzo-p-dioxins and dibenzofurans)in municipal solid waste incineration(MSWI)fly ash.Three process additives(NaOH,Na2 HPO4,H2 O),temperatures(150℃,185℃,220℃)and reaction times(1 h,2 h,3 h)were investigated to identify their effect on the disposal of fly ash samples through orthogonal experiments.High-resolution gas chromatography–mass spectrometry(HRGC/MS)was applied to determine the PCDD/F concentrations in MSWI fly ash.The experimental results revealed that 83.7%of total PCDD/Fs was degraded.Reaction temperature was the most important factor for the degradation of the total PCDD/Fs.Both direct destruction and chlorination reactions(the chlorination degree of PCDFs increased)took part in the degradation of PCDD/Fs in fly ash,which was a new discovery.Several PCDD/F indexes determined by the concentration of indicative congeners were found to quantitatively characterize the dioxin toxicity of the fly ash.Furthermore,heavy metals in the fly ash sample were solidified using microwave-assisted hydrothermal treatment,which provided an experimental basis for the simultaneous disposal of dioxins and heavy metals.Thus,the microwave-assisted hydrothermal process should be considered for the future disposal of MSWI fly ash.展开更多
Polygonatum sibiricum is a traditional medicinal and dietary plant of the family Liliaceae. The main functional macromolecules of P. sibiricum are polysaccharides, which function in antioxidation and regulating immuni...Polygonatum sibiricum is a traditional medicinal and dietary plant of the family Liliaceae. The main functional macromolecules of P. sibiricum are polysaccharides, which function in antioxidation and regulating immunity. Previous studies have shown that insulin resistance(IR), oxidative stress, and inflammation are important factors in the induction of lipid metabolic diseases such as obesity. Therefore, in this study, we established a high-fat diet-induced rat model of obesity and nonalcoholic fatty liver disease(NAFLD) to explore the potential protective effect of P. sibiricum polysaccharides(PSPs) and the mechanisms behind it. After 4 weeks of high-fat diet feeding to induce obesity, the rats were treated with different doses of PSP solution or distilled water for 6 weeks. Compared with untreated obese rats, PSP-treated obese rats showed a decrease in body weight, serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels, hepatic aspartate aminotransferase and alanine aminotransferase activity, hepatic malondialdehyde content, and hepatic levels of the pro-inflammatory factors tumor necrosis factor-α, interleukin-1β, and interleukin-6, as well as increased serum high-density lipoprotein cholesterol levels and hepatic superoxide dismutase, catalase, and glutathione peroxidase activity. Pathological analysis and immunoblotting of the liver tissues indicated that mechanistically, PSPs reduced obesity and NAFLD in rats by upregulating insulin receptor expression, increasing adenosine monophosphate-activated protein kinase phosphorylation, and downregulating sterol regulatory element-binding protein 2 and low-density lipoprotein receptor expression, thus promoting lipid metabolism, decreasing body weight, and reducing inflammation and oxidative stress caused by lipid accumulation. Based on these results, PSPs may have the potential to reduce obesity and NAFLD associated with a high-fat diet.展开更多
The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external a...The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external antenna voltage and current increase with the augment of RF power, whereas decline with the enhancement of gas pressure and flow rate conversely.Compared with gas flow rate and pressure, the power transfer efficiency is significantly improved by RF power, and achieved its maximum value of 0.85 after RF power injected excess125 W. Optical emission spectroscopy(OES) provides the local mean values of electron excited temperature and electron density in inductively coupled plasma(ICP) post regime, which vary in a range of 0.81 eV to 1.15 eV and 3.7×10^(16)m^(-3)to 8.7×10^(17)m^(-3)respectively. Numerical results of the average magnitudes of electron temperature and electron density in twodimensional distribution exhibit similar variation trend with the experimental results under different operating condition by using COMSOL Multiphysics. By comprehensively understanding the characteristics in a low pressure ICP, optimized operating conditions could be anticipated aiming at different academic and industrial applications.展开更多
The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surroga...The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surrogate.Based on a previous investigation of discharge properties,product distribution and energy efficiency,the operating parameters such as CH4 concentration,applied voltage and gas flow rate can effectively affect the CH4 conversion rate,the selectivity of H2 and the properties of solid generated carbon.Nevertheless,the basic properties of RGA plasma and its role in CH4 conversion are scarcely mentioned.In the present work,a 3D RGA model,with a detailed nonequilibrium CH4/Ar plasma chemistry,is developed to validate the previous experiments on CBM conversion,aiming in particular at the distribution of H2 and other gas products.Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection,electron migration and electron diffusion,and is prominently determined by the variation of the gas flow rate and applied voltage.Subsequently,a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction,taking into consideration the formation and loss pathways of crucial targeted substances(such as CH4,C2H2,H2 and H radicals)and corresponding contribution rates.Additionally,the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy(SEM)and Raman spectroscopy.The results show that increasing the applied voltage and decreasing CH4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets,while the size of the graphene sheets is slightly affected by the change in gas flow rate.展开更多
Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lo...Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lower power conversion efficiency(PCE)and inferior reproducibility than conventional PSCs limit further developments.These problems are largely determined by the hole transporting layer(HTL)and the quality of the upper perovskite film[6-8];in particular,the latter is considerably influenced by the surface property of the underlying HTL.展开更多
We propose a novel scheme for THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves(HSWs).The repeated frequency conversions are accomplished by oscillations of...We propose a novel scheme for THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves(HSWs).The repeated frequency conversions are accomplished by oscillations of Stoke waves in resonant cavity(RC)where low-order Stokes waves(LSWs)are converted to high-order Stokes waves again and again.The continuous frequency conversions are accomplished by optimized cascaded difference frequency generation(OCDFG)where the poling periods of the optical crystal are aperiodic leading to the frequency conversions from low-order Stokes waves to high-order Stokes waves uninterruptedly and unidirectionally.Combined with the repeated and continuous frequency conversions,the optical-to-THz energy conversion efficiency(OTECE)exceeds 26%at 300 K and 43%at 100 K with pump intensities of 300 MW/cm^(2).展开更多
New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also du...New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.展开更多
Enhanced endoplasmic reticulum (ER)-associated protein degradation (ERAD) activity by the unfolded protein response (UPR) represents one of the mechanisms for restoring ER homeostasis. In vitro evidence indicate...Enhanced endoplasmic reticulum (ER)-associated protein degradation (ERAD) activity by the unfolded protein response (UPR) represents one of the mechanisms for restoring ER homeostasis. In vitro evidence indicates that the mammalian gp78 protein is an E3 ubiquitin ligase that facilitates ERAD by polyubiquitinating and targeting proteins for proteasomal degradation under both physiologic and stress conditions. However, the in vivo function of gp78 in maintaining ER protein homeostasis remains untested. Here we show that like its mammalian counterpart, the zebrafish gp78 is also an E3 ubiquitin ligase as revealed by in vitro ubiquitination assays. Expression analysis uncovered that gp78 is highly expressed in several organs, including liver and brain, of both larval and adult fish. Treatment of larvae or adult fish with tunicamycin induces ER stress and upregulates the expression of several key components of the gp78 ERAD complex in the liver. Moreover, liver-specific overexpression of the dominant-negative form of gp78 (gp78-R2M) renders liver more sensitive to tunicamycin-induced ER stress and enhances the expression of sterol response element binding protein (Srebp)-target genes, which was largely suppressed in fish overexpressing wild-type gp78. Together, these data indicate that gp78 plays a critical role in protecting against ER stress in liver.展开更多
Highly sensitive broadband photodetection is of critical importance for many applications.However,it is a great challenge to realize broadband photodetection by using a single device.Here we report photodetectors(PDs)...Highly sensitive broadband photodetection is of critical importance for many applications.However,it is a great challenge to realize broadband photodetection by using a single device.Here we report photodetectors(PDs)based on three-dimensional(3 D)graphene foam(GF)photodiodes with asymmetric electrodes,which show an ultra-broadband photoresponse from ultraviolet to microwave for wavelengths ranging from 10~2 to 10~6 nm.Moreover,the devices exhibit a high photoresponsivity of 10~3 A·W^-1,short response time of 43 ms,and3 d B bandwidth of 80 Hz.The high performance of the devices can be attributed to the photothermoelectric(PTE,also known as the Seebeck)effect in 3 D GF photodiodes.The excellent optical,thermal,and electrical properties of 3 D GFs offer a superior basis for the fabrication of PTE-based PDs.This work paves the way to realize ultra-broadband and high-sensitivity PDs operated at room temperature.展开更多
Self-powered and flexible ultrabroadband photodetectors(PDs)are desirable in a wide range of applications.The current PDs based on the photothermoelectric(PTE)effect have realized broadband photodetection.However,most...Self-powered and flexible ultrabroadband photodetectors(PDs)are desirable in a wide range of applications.The current PDs based on the photothermoelectric(PTE)effect have realized broadband photodetection.However,most of them express low photoresponse and lack of flexibility.In this work,high-performance,self-powered,and flexible PTE PDs based on laser-scribed reduced graphene oxide(LSG)∕CsPbBr3 are developed.The comparison experiment with LSG PD and fundamental electric properties show that the LSG∕CsPbBr3 device exhibits enhanced ultrabroadband photodetection performance covering ultraviolet to terahertz range with high photoresponsivity of 100 mA/W for 405 nm and 10 mA/W for 118μm at zero bias voltage,respectively.A response time of 18 ms and flexible experiment are also acquired at room temperature.Moreover,the PTE effect is fully discussed in the LSG∕CsPbBr3 device.This work demonstrates that LSG∕CsPbBr3 is a promising candidate for the construction of high-performance,flexible,and self-powered ultrabroadband PDs at room temperature.展开更多
The preparation of high-quality perovskite films with optimal morphologies is important for achieving highperformance perovskite photodetectors(PPDs). An effective strategy to optimize the morphologies is to add antis...The preparation of high-quality perovskite films with optimal morphologies is important for achieving highperformance perovskite photodetectors(PPDs). An effective strategy to optimize the morphologies is to add antisolvents during the spin-coating steps. In this work, a novel environment-friendly antisolvent tert-amyl alcohol(TAA) is employed first to improve the quality of perovskite films, which can effectively regulate the formation of an intermediate phase staged in between a liquid precursor phase and a solid perovskite phase due to its moderate polarity and further promote the homogeneous nucleation and crystal growth, thus leading to the formation of high-quality perovskite films and enhanced photodetector performance. As a result, the responsivity of the PPD reaches 1.56 A/W under the illumination of 532 nm laser with the power density of 6.37 μW=cm^(2) at a bias voltage of -2 V, which is good responsivity for PPDs with the vertical structure and only CH_(3)NH_(3)PbI_(3) perovskite as the photosensitive material. The corresponding detectivity reaches 1.47×10^(12) Jones, while the linear dynamic range reaches 110 dB. These results demonstrate that our developed green antisolvent TAA has remarkable advantages for the fabrication of high-performance PPDs and can provide a reference for similar research work.展开更多
Twenty-seven patients with severe colon trauma treated in the Shaoxing People’s Hospital from 1995 to 2006 were retrospectively analyzed.The patients with severe tunica muscularis injury were treated by med-ical glue...Twenty-seven patients with severe colon trauma treated in the Shaoxing People’s Hospital from 1995 to 2006 were retrospectively analyzed.The patients with severe tunica muscularis injury were treated by med-ical glue combined with the greater omentum during operations.The initial result was encouraging.All patients were cured with no anastomotic leakage or abs-cess.Therefore,reasonable use of medical glue combined with the greater omentum can not only improve the cur-ative rate but also reduces postoperative complications for patients with colon injury.展开更多
Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots(QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic reson...Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots(QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic resonance(LSPR), the absorption properties of QDs can be enhanced. In this paper, we fabricate a lead-free CuInSe2 QD field effect phototransistor(FEpT) by utilizing the LSPR enhancement of Au nanoparticles(NPs). The plasmonic FEpT demonstrates responsivity up to 2.7 μA· W^(-1) and a specific detectivity of 7 × 10~3 Jones at zero bias under illumination by a 532 nm laser, values that are enhanced by approximately 200% more than devices without Au NPs. Particularly, the FEpT exhibits a multi-wavelength response, which is photoresponsive to 405, 532,and 808 nm irradiations, and presents stability and reproducibility in the progress of ON–OFF cycles.Furthermore, the enhancement induced by Au NP LSPR can be interpreted by finite-difference time domain simulations. The low-cost solution-based process and excellent device performance strongly underscore leadfree CuInSe2 QDs as a promising material for self-powered photoelectronic applications, which can be further enhanced by Au NP LSPR.展开更多
基金Supported by National Natural Science Foundation of China(81774229)Nanjing Chinese Medicine Young Talent Cultivation Program(ZYQ20027)+3 种基金Natural Science Foundation of Nanjing University of Chinese Medicine(XZR2021052)Discipline(Academic)Reserve Talent Training Program of Nanjing Hospital of Chinese Medicine(YRC2016-CZL)Nanjing Traditional Chinese Medicine Science and Technology Special Fund Project(ZYQN202203)Traditional Chinese Medicine Preparation Research Project in Nanjing Medical Institutions(NJCC-ZJ-202315).
文摘[Objectives]To observe the effect of Guanxin-V Mixture combined with Sacubitril Valsartan on cardiac function in patients after PCI for acute ST-segment elevation myocardial infarction(STE-MI).[Methods]41 cases of STEMI patients(qi and yin deficiency and blood stasis and obstruction)hospitalized in Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine from January 2020 to June 2021 were randomly divided into 21 cases in the treatment group and 20 cases in the control group,and the two groups were given standardized Western medicine treatment as soon as possible after PCI.The control group was treated with Sacubitril Valsartan,and the treatment group was treated with Guanxin-V Mixture on the basis of treatment in the control group.The patients in the two groups were treated for 3 months,and the TCM syndrome score,left ventricular ejection fraction(LVEF),and N-Terminal Pro-Brain Natriuretic Peptide(NT-proBNP),interleukin-6(IL-6),and high-sensitivity C-reactive protein(hs-CRP)levels,and the incidence of heart failure and adverse reactions in the two groups after treatment were recorded.[Results]After the treatment,the TCM syndrome score and serum NT-proBNP,IL-6 and hs-CRP levels of the two groups significantly decreased(P<0.05),and the levels of the treatment group were significantly lower than those of the control group(P<0.05);the LVEF of the two groups significantly increased(P<0.05),and the level of the treatment group was significantly higher than that of the control group(P<0.05).Comparison of the incidence of heart failure and adverse reactions in the two groups showed no statistically significant differences(P>0.05).[Conclusions]Guanxin-V Mixture combined with Sacubitril Valsartan could significantly improve cardiac function in STEMI patients undergoing PCI,and its effect may be related to the suppression of inflammatory response.
基金Supported by the Innovative Research Groups of the National Natural Science Foundation of China(51621005)the National Natural Science Foundation of China(51676172)
文摘In this work,microwave treatment was introduced to a hydrothermal treatment process to degrade PCDD/Fs(Polychlorinated dibenzo-p-dioxins and dibenzofurans)in municipal solid waste incineration(MSWI)fly ash.Three process additives(NaOH,Na2 HPO4,H2 O),temperatures(150℃,185℃,220℃)and reaction times(1 h,2 h,3 h)were investigated to identify their effect on the disposal of fly ash samples through orthogonal experiments.High-resolution gas chromatography–mass spectrometry(HRGC/MS)was applied to determine the PCDD/F concentrations in MSWI fly ash.The experimental results revealed that 83.7%of total PCDD/Fs was degraded.Reaction temperature was the most important factor for the degradation of the total PCDD/Fs.Both direct destruction and chlorination reactions(the chlorination degree of PCDFs increased)took part in the degradation of PCDD/Fs in fly ash,which was a new discovery.Several PCDD/F indexes determined by the concentration of indicative congeners were found to quantitatively characterize the dioxin toxicity of the fly ash.Furthermore,heavy metals in the fly ash sample were solidified using microwave-assisted hydrothermal treatment,which provided an experimental basis for the simultaneous disposal of dioxins and heavy metals.Thus,the microwave-assisted hydrothermal process should be considered for the future disposal of MSWI fly ash.
基金financially supported by the Natural Science Foundation of Hunan Province, China (2019JJ40272)the Scientific Research Foundation of Hunan Provincial Education Department, China (20C1676)the Scientific Research Foundation of Shaoyang College, China (2020HX122)。
文摘Polygonatum sibiricum is a traditional medicinal and dietary plant of the family Liliaceae. The main functional macromolecules of P. sibiricum are polysaccharides, which function in antioxidation and regulating immunity. Previous studies have shown that insulin resistance(IR), oxidative stress, and inflammation are important factors in the induction of lipid metabolic diseases such as obesity. Therefore, in this study, we established a high-fat diet-induced rat model of obesity and nonalcoholic fatty liver disease(NAFLD) to explore the potential protective effect of P. sibiricum polysaccharides(PSPs) and the mechanisms behind it. After 4 weeks of high-fat diet feeding to induce obesity, the rats were treated with different doses of PSP solution or distilled water for 6 weeks. Compared with untreated obese rats, PSP-treated obese rats showed a decrease in body weight, serum total cholesterol, triglyceride, and low-density lipoprotein cholesterol levels, hepatic aspartate aminotransferase and alanine aminotransferase activity, hepatic malondialdehyde content, and hepatic levels of the pro-inflammatory factors tumor necrosis factor-α, interleukin-1β, and interleukin-6, as well as increased serum high-density lipoprotein cholesterol levels and hepatic superoxide dismutase, catalase, and glutathione peroxidase activity. Pathological analysis and immunoblotting of the liver tissues indicated that mechanistically, PSPs reduced obesity and NAFLD in rats by upregulating insulin receptor expression, increasing adenosine monophosphate-activated protein kinase phosphorylation, and downregulating sterol regulatory element-binding protein 2 and low-density lipoprotein receptor expression, thus promoting lipid metabolism, decreasing body weight, and reducing inflammation and oxidative stress caused by lipid accumulation. Based on these results, PSPs may have the potential to reduce obesity and NAFLD associated with a high-fat diet.
基金supported by National Natural Science Foundation of China(No.51576174)
文摘The electrical and plasma parameters of a low pressure inductively coupled argon plasma are investigated over a wide range of parameters(RF power, flow rate and pressure) by diverse characterizations. The external antenna voltage and current increase with the augment of RF power, whereas decline with the enhancement of gas pressure and flow rate conversely.Compared with gas flow rate and pressure, the power transfer efficiency is significantly improved by RF power, and achieved its maximum value of 0.85 after RF power injected excess125 W. Optical emission spectroscopy(OES) provides the local mean values of electron excited temperature and electron density in inductively coupled plasma(ICP) post regime, which vary in a range of 0.81 eV to 1.15 eV and 3.7×10^(16)m^(-3)to 8.7×10^(17)m^(-3)respectively. Numerical results of the average magnitudes of electron temperature and electron density in twodimensional distribution exhibit similar variation trend with the experimental results under different operating condition by using COMSOL Multiphysics. By comprehensively understanding the characteristics in a low pressure ICP, optimized operating conditions could be anticipated aiming at different academic and industrial applications.
基金supported by the Foundation for Innovative Research Groups of National Natural Science Foundation of China (No. 51621005)China Postdoctoral Science Foundation (No. 2018M630672)
文摘The use of atmospheric rotating gliding arc(RGA)plasma is proposed as a facile,scalable and catalyst-free approach to synthesizing hydrogen(H2)and graphene sheets from coalbed methane(CBM).CH4 is used as a CBM surrogate.Based on a previous investigation of discharge properties,product distribution and energy efficiency,the operating parameters such as CH4 concentration,applied voltage and gas flow rate can effectively affect the CH4 conversion rate,the selectivity of H2 and the properties of solid generated carbon.Nevertheless,the basic properties of RGA plasma and its role in CH4 conversion are scarcely mentioned.In the present work,a 3D RGA model,with a detailed nonequilibrium CH4/Ar plasma chemistry,is developed to validate the previous experiments on CBM conversion,aiming in particular at the distribution of H2 and other gas products.Our results demonstrate that the dynamics of RGA is derived from the joint effects of electron convection,electron migration and electron diffusion,and is prominently determined by the variation of the gas flow rate and applied voltage.Subsequently,a combined experimental and chemical kinetical simulation is performed to analyze the selectivity of gas products in an RGA reaction,taking into consideration the formation and loss pathways of crucial targeted substances(such as CH4,C2H2,H2 and H radicals)and corresponding contribution rates.Additionally,the effects of operating conditions on the properties of solid products are investigated by scanning electron microscopy(SEM)and Raman spectroscopy.The results show that increasing the applied voltage and decreasing CH4 concentration will change the solid carbon from its initial spherical structure into folded multilayer graphene sheets,while the size of the graphene sheets is slightly affected by the change in gas flow rate.
基金financially supported by the Research Grants Council of Hong Kong(GRF grant 15246816 and CRF grant C5037-18G)Shenzhen Science and Technology Innovation Commission(Project No.JCYJ20170413154602102)+4 种基金LiaoNing Revitalization Talents Program(XLYC1807231)the DICP ZZBS201813the Natural Science Foundation of Liaoning Province of China(20180540124)the Hong Kong Polytechnic University internal research fundsthe support of Hong Kong Scholars Program(XJ2017046)。
文摘Inverted organic-inorganic hybrid perovskite solar cells(i-PSC)with low temperature processed interlayers and weak hysteresis behaviors have shown great potential for commercialization[1-5].However,their relatively lower power conversion efficiency(PCE)and inferior reproducibility than conventional PSCs limit further developments.These problems are largely determined by the hole transporting layer(HTL)and the quality of the upper perovskite film[6-8];in particular,the latter is considerably influenced by the surface property of the underlying HTL.
基金the National Natural Science Foundation of China(Grant Nos.61735010,31671580,and 61601183)Natural Science Foundation of Henan Province,China(Grant No.162300410190)Program for Science&Technology Innovation Talents in Universities of Henan Province,China(Grant No.18HASTIT023)。
文摘We propose a novel scheme for THz wave generation by repeated and continuous frequency conversions from pump wave to high-order Stokes waves(HSWs).The repeated frequency conversions are accomplished by oscillations of Stoke waves in resonant cavity(RC)where low-order Stokes waves(LSWs)are converted to high-order Stokes waves again and again.The continuous frequency conversions are accomplished by optimized cascaded difference frequency generation(OCDFG)where the poling periods of the optical crystal are aperiodic leading to the frequency conversions from low-order Stokes waves to high-order Stokes waves uninterruptedly and unidirectionally.Combined with the repeated and continuous frequency conversions,the optical-to-THz energy conversion efficiency(OTECE)exceeds 26%at 300 K and 43%at 100 K with pump intensities of 300 MW/cm^(2).
基金the GDAS’Project of Science and Technology Development(No.2020GDASYL-20200103044)Key-Area Research and Development Program of Guangdong(No.2020B1111350002)+1 种基金the National Key R&D Program of China(No.2019YFC1805305)the Project of Water Resource Department of Guangdong Province(No.2017-18).
文摘New pollutant pharmaceutical and personal care products(PPCPs),especially antiviral drugs,have received increasing attention not only due to their increase in usage after the outbreak of COVID-19 epidemics but also due to their adverse impacts on water ecological environment.Electro-Fenton technology is an effective method to remove PPCPs from water.Novel particle electrodes(MMT/rGO/Fe_(3)O_(4))were synthesized by depositing Fe3O4 nanoparticles on reduced graphene oxide modified montmorillonite and acted as catalysts to promote oxidation performance in a three-dimensional electro-Fenton(3D-EF)system.The electrodes combined the catalytic property of Fe3O4,hydrophilicity of montmorillonite and electrical conductivity of graphene oxides,and applied for the degradation of Acyclovir(ACV)with high efficiency and ease of operation.At optimal condition,the degradation rate of ACV reached 100%within 120 min,and the applicable pH range could be 3 to 11 in the 3D-EF system.The stability and reusability of MMT/rGO/Fe_(3)O_(4)particle electrodes were also studied,the removal rate of ACV remained at 92%after 10 cycles,which was just slightly lower than that of the first cycle.Potential degradation mechanisms were also proposed by methanol quenching tests and FT-ICR-MS.
基金supported by the National Science Foundation(No.1120833)to SFa research grant (MB-8716-08) from United States-Israel Binational Agriculture Research and Development Fund to SD
文摘Enhanced endoplasmic reticulum (ER)-associated protein degradation (ERAD) activity by the unfolded protein response (UPR) represents one of the mechanisms for restoring ER homeostasis. In vitro evidence indicates that the mammalian gp78 protein is an E3 ubiquitin ligase that facilitates ERAD by polyubiquitinating and targeting proteins for proteasomal degradation under both physiologic and stress conditions. However, the in vivo function of gp78 in maintaining ER protein homeostasis remains untested. Here we show that like its mammalian counterpart, the zebrafish gp78 is also an E3 ubiquitin ligase as revealed by in vitro ubiquitination assays. Expression analysis uncovered that gp78 is highly expressed in several organs, including liver and brain, of both larval and adult fish. Treatment of larvae or adult fish with tunicamycin induces ER stress and upregulates the expression of several key components of the gp78 ERAD complex in the liver. Moreover, liver-specific overexpression of the dominant-negative form of gp78 (gp78-R2M) renders liver more sensitive to tunicamycin-induced ER stress and enhances the expression of sterol response element binding protein (Srebp)-target genes, which was largely suppressed in fish overexpressing wild-type gp78. Together, these data indicate that gp78 plays a critical role in protecting against ER stress in liver.
基金National Natural Science Foundation of China(61675147,61605141,61735010,91838301)National Key Research and Development Program of China(2017YFA0700202)+2 种基金Basic Research Program of Shenzhen(JCYJ20170412154447469)Beiyang Yong Junior Faculties of Tianjin University(2019XRG-0056)Wenzhou City Governmental Public Industrial Technology Project(G20160014)。
文摘Highly sensitive broadband photodetection is of critical importance for many applications.However,it is a great challenge to realize broadband photodetection by using a single device.Here we report photodetectors(PDs)based on three-dimensional(3 D)graphene foam(GF)photodiodes with asymmetric electrodes,which show an ultra-broadband photoresponse from ultraviolet to microwave for wavelengths ranging from 10~2 to 10~6 nm.Moreover,the devices exhibit a high photoresponsivity of 10~3 A·W^-1,short response time of 43 ms,and3 d B bandwidth of 80 Hz.The high performance of the devices can be attributed to the photothermoelectric(PTE,also known as the Seebeck)effect in 3 D GF photodiodes.The excellent optical,thermal,and electrical properties of 3 D GFs offer a superior basis for the fabrication of PTE-based PDs.This work paves the way to realize ultra-broadband and high-sensitivity PDs operated at room temperature.
基金National Natural Science Foundation of China(61605141,61675147,61735010,91838301)National Key Research and Development Program of China(2017YFA0700202)+1 种基金Basic Research Program of Shenzhen(JCYJ20170412154447469)Beiyang Young Junior faculties of Tianjin University(2019XRG-0056).
文摘Self-powered and flexible ultrabroadband photodetectors(PDs)are desirable in a wide range of applications.The current PDs based on the photothermoelectric(PTE)effect have realized broadband photodetection.However,most of them express low photoresponse and lack of flexibility.In this work,high-performance,self-powered,and flexible PTE PDs based on laser-scribed reduced graphene oxide(LSG)∕CsPbBr3 are developed.The comparison experiment with LSG PD and fundamental electric properties show that the LSG∕CsPbBr3 device exhibits enhanced ultrabroadband photodetection performance covering ultraviolet to terahertz range with high photoresponsivity of 100 mA/W for 405 nm and 10 mA/W for 118μm at zero bias voltage,respectively.A response time of 18 ms and flexible experiment are also acquired at room temperature.Moreover,the PTE effect is fully discussed in the LSG∕CsPbBr3 device.This work demonstrates that LSG∕CsPbBr3 is a promising candidate for the construction of high-performance,flexible,and self-powered ultrabroadband PDs at room temperature.
基金National Natural Science Foundation of China(61675147,61735010,91838301)National Key Research and Development Program of China(2017YFA0700202)+3 种基金Department of Education of Guangdong Province(2018KQNCX264)Basic Research Program of Shenzhen(JCYJ20170412154447469)Beiyang Yong Junior Faculties of Tianjin University(2019XRG-0056)Wenzhou City Governmental Public Industrial Technology Project(G20160014)。
文摘The preparation of high-quality perovskite films with optimal morphologies is important for achieving highperformance perovskite photodetectors(PPDs). An effective strategy to optimize the morphologies is to add antisolvents during the spin-coating steps. In this work, a novel environment-friendly antisolvent tert-amyl alcohol(TAA) is employed first to improve the quality of perovskite films, which can effectively regulate the formation of an intermediate phase staged in between a liquid precursor phase and a solid perovskite phase due to its moderate polarity and further promote the homogeneous nucleation and crystal growth, thus leading to the formation of high-quality perovskite films and enhanced photodetector performance. As a result, the responsivity of the PPD reaches 1.56 A/W under the illumination of 532 nm laser with the power density of 6.37 μW=cm^(2) at a bias voltage of -2 V, which is good responsivity for PPDs with the vertical structure and only CH_(3)NH_(3)PbI_(3) perovskite as the photosensitive material. The corresponding detectivity reaches 1.47×10^(12) Jones, while the linear dynamic range reaches 110 dB. These results demonstrate that our developed green antisolvent TAA has remarkable advantages for the fabrication of high-performance PPDs and can provide a reference for similar research work.
文摘Twenty-seven patients with severe colon trauma treated in the Shaoxing People’s Hospital from 1995 to 2006 were retrospectively analyzed.The patients with severe tunica muscularis injury were treated by med-ical glue combined with the greater omentum during operations.The initial result was encouraging.All patients were cured with no anastomotic leakage or abs-cess.Therefore,reasonable use of medical glue combined with the greater omentum can not only improve the cur-ative rate but also reduces postoperative complications for patients with colon injury.
基金National Natural Science Foundation of China(NSFC)(61605141,61675147,61735010)Basic Research Program of Shenzhen(JCYJ20170412154447469)Open Fund of Key Laboratory of Opto-Electronic Information Technology,Ministry of Education(Tianjin University)
文摘Because they possess excellent visible light absorption properties, lead-free colloidal copper-based chalcogenide quantum dots(QDs) have emerged in photoelectronic fields. By means of localized surface plasmonic resonance(LSPR), the absorption properties of QDs can be enhanced. In this paper, we fabricate a lead-free CuInSe2 QD field effect phototransistor(FEpT) by utilizing the LSPR enhancement of Au nanoparticles(NPs). The plasmonic FEpT demonstrates responsivity up to 2.7 μA· W^(-1) and a specific detectivity of 7 × 10~3 Jones at zero bias under illumination by a 532 nm laser, values that are enhanced by approximately 200% more than devices without Au NPs. Particularly, the FEpT exhibits a multi-wavelength response, which is photoresponsive to 405, 532,and 808 nm irradiations, and presents stability and reproducibility in the progress of ON–OFF cycles.Furthermore, the enhancement induced by Au NP LSPR can be interpreted by finite-difference time domain simulations. The low-cost solution-based process and excellent device performance strongly underscore leadfree CuInSe2 QDs as a promising material for self-powered photoelectronic applications, which can be further enhanced by Au NP LSPR.